Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Operation of a free-electron laser from the extreme ultraviolet to the water window

Abstract

We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 µJ for individual pulses, and the average energy per pulse reached 70 µJ. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20 mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Peak brilliance of X-ray FELs in comparison with third-generation synchrotron-radiation light sources.
Figure 2: Production of electron bunches at FLASH.
Figure 3: Spatial profile of the FEL radiation.
Figure 4: Energy in the radiation pulse and its fluctuations.
Figure 5: EUV spectra of the fundamental (a), 3rd harmonic (b) and 5th harmonic (c) contributions to the FEL output.
Figure 6: Temporal structure of the radiation pulse for an average energy of 40 µJ, predicted by the code FAST using experimentally determined radiation properties.

References

  1. 1

    Matthews, D. L. et al. Demonstration of a soft x-ray amplifier. Phys. Rev. Lett. 54, 110–113 (1985).

    ADS  Article  Google Scholar 

  2. 2

    MacGowan, B. J. et al. Demonstration of soft x-ray amplification in nickel-like ions. Phys. Rev. Lett. 59, 2157–2160 (1987).

    ADS  Article  Google Scholar 

  3. 3

    Zeitoun, Ph. et al. A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam. Nature 431, 426–429 (2004).

    ADS  Article  Google Scholar 

  4. 4

    Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L33 (1988).

    Article  Google Scholar 

  5. 5

    Li, X. F., L'Huillier, A., Ferray, M., Lompre', L. A. & Mainfray, G. Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 32, 5751–5761 (1989).

    ADS  Article  Google Scholar 

  6. 6

    Dromey, B. et al. High harmonic generation in the relativistic limit. Nature Phys. 3, 456–459 (2006).

    ADS  Article  Google Scholar 

  7. 7

    Kondratenko, A. M. & Saldin, E. L. Generation of coherent radiation by a relativistic electron beam in an undulator. Part. Accelerators 10, 207–216 (1980).

    Google Scholar 

  8. 8

    Derbenev, Ya. S., Kondratenko, A. M. & Saldin, E. L. On the possibility of using a free-electron laser for polarization of electrons in storage rings. Nucl. Instrum. Methods 193, 415–421 (1982).

    ADS  Article  Google Scholar 

  9. 9

    Murphy, J. B. & Pellegrini, C. Free electron lasers for the XUV spectral region. Nucl. Instrum. Methods A 237, 159–167 (1985).

    ADS  Article  Google Scholar 

  10. 10

    Hogan, M. et al. Measurements of gain larger than 105 at 12 µm in a self-amplified spontaneous-emission free-electron laser. Phys. Rev. Lett. 81, 4867–4870 (1998).

    ADS  Article  Google Scholar 

  11. 11

    Milton, S. V. et al. Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser. Science 292, 2037–2041 (2001).

    ADS  Article  Google Scholar 

  12. 12

    Ayvazyan, V. et al. Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime. Phys. Rev. Lett. 88, 104802 (2002).

    ADS  Article  Google Scholar 

  13. 13

    Ayvazyan, V. et al. A new powerful source for coherent VUV radiation: Demonstration of exponential growth and saturation at the TTF free-electron laser. Eur. Phys. J. D 20, 149–156 (2002).

    ADS  Article  Google Scholar 

  14. 14

    Ayvazyan, V. et al. First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. D 37, 297–303 (2006).

    ADS  Article  Google Scholar 

  15. 15

    Wabnitz, H. et al. Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser. Nature 420, 482–485 (2002).

  16. 16

    Meyer, M. et al. Two-color photoionization in xuv free-electron and visible laser fields. Phys. Rev. A 74, 011401 (2006).

    ADS  Article  Google Scholar 

  17. 17

    Sorokin, A. A., Bobashev, S. V., Tiedtke. K. & Richter, M. Multi-photon ionization of molecular nitrogen by femtosecond soft x-ray FEL pulses. J. Phys. B 39, L299–L304 (2006).

    ADS  Article  Google Scholar 

  18. 18

    Sobierajski, R. et al. Experimental station to study the interaction of intense femtosecond vacuum ultraviolet pulses with matter at TTF1 free electron laser. Rev. Sci. Instrum. 76, 013909 (2005).

    ADS  Article  Google Scholar 

  19. 19

    Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys. 2, 839–843 (2006).

    ADS  Article  Google Scholar 

  20. 20

    Altarelli, M. et al. (Eds) XFEL: The European X-Ray Free-Electron Laser. Technical Design Report. Preprint DESY 2006–097, (DESY, Hamburg, 2006) (see also http://xfel.desy.de).

  21. 21

    Merkel, A. German Science Policy 2006. Science 313, 147 (2006).

  22. 22

    Arthur, J. et al. Linac Coherent Light Source (LCLS). Conceptual Design Report. SLAC- R593 (Stanford, 2002) (see also <http://www-ssrl.slac.stanford.edu/lcls/cdr>).

  23. 23

    Tanaka, T. & Shintake, T. (Eds) SCSS X-FEL Conceptual Design Report (Riken Harima Institute, Hyogo, Japan,) May 2005 (see also <http://www-xfel.spring8.or.jp>).

  24. 24

    Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. The Physics of Free Electron Lasers (Springer, Berlin, 1999).

  25. 25

    Bonifacio, R., Pellegrini, C. & Narducci, L. M. Collective instabilities and high-gain regime in a free-electron laser. Opt. Commun. 50, 373 (1984).

    ADS  Article  Google Scholar 

  26. 26

    Dohlus, M. et al. Start-to-end simulations of SASE FEL at the TESLA Test Facility, phase 1. Nucl. Instrum. Methods A 530, 217–233 (2004).

    ADS  Article  Google Scholar 

  27. 27

    Krinsky, S. & Huang, Z. Frequency chirped self-amplified spontaneous-emission free-electron lasers. Phys. Rev. ST Accel. Beams 6, 050702 (2003).

    ADS  Article  Google Scholar 

  28. 28

    Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond x-ray pulses. Phys. Rev. ST Accel. Beams 9, 050702 (2006).

    ADS  Article  Google Scholar 

  29. 29

    Bytchkov, A. et al. Development of MCP-based photon diagnostics at the TESLA Test Facility at DESY. Nucl. Instrum. Methods A 528, 254–257 (2004).

    ADS  Article  Google Scholar 

  30. 30

    Richter, M. et al. Measurement of gigawatt radiation pulses from a vacuum and extreme ultraviolet free-electron laser. Appl. Phys. Lett. 83, 2970–2972 (2003).

    ADS  Article  Google Scholar 

  31. 31

    Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Statistical properties of radiation from VUV and X-ray free electron laser. Opt. Commun. 148, 383–403 (1998).

    ADS  Article  Google Scholar 

  32. 32

    Martins, M. et al. Monochromator beamline for FLASH. Rev. Sci. Instrum. 77, 115108 (2006).

    ADS  Article  Google Scholar 

  33. 33

    Colson, W. Free-electron lasers operating in higher harmonics. Phys. Rev. A 24, 639–641 (1981).

    ADS  Article  Google Scholar 

  34. 34

    Freund, H., Biedron, S. & Milton, S. Nonlinear harmonic generation in free-electron lasers. IEEE J. Quant. Electron. 36, 275–281 (2000).

    ADS  Article  Google Scholar 

  35. 35

    Huang, Z, & Kim, K. Three-dimensional analysis of harmonic generation in high-gain free-electron lasers. Phys. Rev. E. 62, 7295–7308 (2000).

    ADS  Article  Google Scholar 

  36. 36

    Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Properties of the third harmonic of the radiation from self-amplified spontaneous emission free electron laser. Phys. Rev. ST Accel. Beams 9, 030702 (2006).

    ADS  Article  Google Scholar 

  37. 37

    Geloni, G., Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Exact solution for second harmonic generation in XFELs, Opt. Commun. 271, 207–218 (2007).

    ADS  Article  Google Scholar 

  38. 38

    Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. FAST: A three-dimensional time-dependent FEL simulation code. Nucl. Instrum. Methods A 429, 233–237 (1999).

    ADS  Article  Google Scholar 

  39. 39

    Tiedtke, K. et al. The SASE FEL at DESY: photon beam diagnostics for the user facility. AIP Conf. Proc. 705, 588–592 (2004).

    ADS  Article  Google Scholar 

  40. 40

    Nicolosi, P. et al. Grazing–incidence spectrometer for the monitoring of the VUV FEL beam at DESY. J. Electron. Spec. Relat. Phenom. 144, 1055 (2005).

    Article  Google Scholar 

  41. 41

    Kita, T., Harada, T, Nakano, N. & Kuroda, H. Mechanically ruled aberration-corrected concave gratings for a flat-field grazing-incidence spectrograph. Appl. Opt. 22, 512 (1983).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the invaluable support of the technical staff of DESY and participating groups from the TESLA Technical Collaboration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. V. Yurkov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, figures S1-S7, tables S1-S2 (PDF 256 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ackermann, W., Asova, G., Ayvazyan, V. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photon 1, 336–342 (2007). https://doi.org/10.1038/nphoton.2007.76

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing