Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atomic spectroscopy on a chip

Abstract

Guiding light through hollow optical waveguides has opened the field of photonics to the investigation of non-solid materials that have all the convenience of integrated optics. Of particular interest is the confinement of atomic vapours, such as rubidium, because of its wide range of applications, including slow and stopped light1, single-photon nonlinear optics2, quantum information processing3, precision spectroscopy4 and frequency stabilization5. Here, we present the first monolithically integrated rubidium vapour cell using hollow-core antiresonant reflecting optical waveguides (ARROWs) on a silicon chip. The cells have a footprint of less than 1 cm2, fully planar fibre-optical access, and a cell volume more than 7 orders of magnitude less than conventional bulk cells. The micrometre-sized mode areas enable high beam intensities over near centimetre lengths. We demonstrate optical densities in excess of 2, and saturation absorption spectroscopy on a chip. These results allow the study of atoms and molecules on a platform that combines the advantages of photonic-crystal-like structures with integrated optics.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Planar atomic spectroscopy chip.
Figure 2: Rubidium spectroscopy on a chip.
Figure 3: Characteristics of an integrated rubidium cell.
Figure 4: Atomic spectroscopy on a chip.

References

  1. Lukin, M. D. Colloquium: Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003).

    ADS  Article  Google Scholar 

  2. Schmidt, H. & Imamoğlu, A. Giant Kerr nonlinearities using electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

    ADS  Article  Google Scholar 

  3. Eisaman, M. D. et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005).

    ADS  Article  Google Scholar 

  4. Hänsch, T. W. et al. Precision spectroscopy of hydrogen and femtosecond laser frequency combs. Phil. Trans. R. Soc. Lond. A 363, 2155–2163 (2005).

    ADS  Article  Google Scholar 

  5. Danielli, A., Rusian, P., Arie, A., Chou, M. H. & Fejer, M. M. Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2 → 5D5/2 two-photon transitions of rubidium. Opt. Lett. 25, 905–907 (2000).

    ADS  Article  Google Scholar 

  6. Russell, P. Holey fiber concept spawns optical-fiber renaissance. Laser Focus World 38, 77–82 (2002).

    Google Scholar 

  7. Fink, Y. et al. A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998).

    ADS  Article  Google Scholar 

  8. Hadley, G. R., Fleming, J. & Lin, S. Bragg fiber design for linear polarization. Opt. Lett. 29, 809–811, (2004).

    ADS  Article  Google Scholar 

  9. Knappe, S. et al. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability. Opt. Lett. 30, 2351–2353 (2005).

    ADS  Article  Google Scholar 

  10. Benabid, F., Antonopoulos, G., Knight, J. C. & Russell, P. St. J. Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber. Phys. Rev. Lett. 95, 213903 (2005).

    ADS  Article  Google Scholar 

  11. Dawes, A. M. C., Illing, L., Clark, S. M. & Gauthier, D. J. All-optical switching in rubidium vapor. Science 308, 672–674 (2005).

    ADS  Article  Google Scholar 

  12. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    ADS  Article  Google Scholar 

  13. Kolchin, P., Du, S., Belthangady, C., Yin, G. Y. & Harris, S. E. Generation of narrow-bandwidth paired photons: Use of a single driving laser. Phys. Rev. Lett. 97, 113602 (2006).

    ADS  Article  Google Scholar 

  14. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997).

    Article  Google Scholar 

  15. Benabid, F., Couny, F., Knight, J. C., Birks, T. A. & Russell, P. St J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488–491 (2005).

    ADS  Article  Google Scholar 

  16. Ghosh, S., Sharping, J. E., Ouzonov, D. G. & Gaeta, A. L. Coherent resonant interactions and slow light with molecules confined in photonic band-gap fibers. Phys. Rev. Lett. 94, 093902 (2005).

    ADS  Article  Google Scholar 

  17. Couny, F., Light, P. S., Benabid, F. & Russell, P. St. J. Electromagnetically induced transparency and saturable absorption in all-fiber devices based on C2H2-filled hollow-core photonic crystal fiber. Opt. Commun. 263, 28–31 (2006).

    ADS  Article  Google Scholar 

  18. Thapa, R. et al. Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber. Opt. Lett. 31, 2489–2491 (2006).

    ADS  Article  Google Scholar 

  19. Ghosh, S. et al. Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber. Phys. Rev. Lett. 97, 023603 (2006).

    ADS  Article  Google Scholar 

  20. Duguay, M. A., Kokubun, Y., Koch, T. & Pfeiffer, L. Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures. Appl. Phys. Lett. 49, 13–15 (1986).

    ADS  Article  Google Scholar 

  21. Yin, D., Barber, J. P., Hawkins, A. R. & Schmidt, H. Integrated ARROW waveguides with hollow cores. Opt. Express 12, 2710–2715 (2004).

    ADS  Article  Google Scholar 

  22. Schmidt, H., Yin, D., Barber, J. P. & Hawkins, A. R. Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids. IEEE J. Sel. Top. Quant. Electron. 11, 519–527 (2005).

    ADS  Article  Google Scholar 

  23. Yin, D., Barber, J. P., Deamer, D. W., Hawkins, A. R. & Schmidt, H. Single-molecule detection sensitivity using planar integrated optics on a chip. Opt. Lett. 31, 2136–2138 (2006).

    ADS  Article  Google Scholar 

  24. Barber, J. P. et al. Fabrication of hollow waveguides with sacrificial aluminum cores. IEEE Photon. Tech. Lett. 17, 363–365 (2005).

    ADS  Article  Google Scholar 

  25. Lukin, M. D. & Imamoğlu, A. Controlling photons using electromagnetically induced transparency. Nature 413, 273–276 (2001).

    ADS  Article  Google Scholar 

  26. Alexandrov, E. B. et al. Light-induced desorption of alkali-metal atoms from paraffin coating. Phys. Rev. A 66, 042903 (2002).

    ADS  Article  Google Scholar 

  27. Liew, L. et al. Microfabricated alkali atom vapor cells. Appl. Phys. Lett. 84, 2694–2696 (2004).

    ADS  Article  Google Scholar 

  28. Schmidt, H. & Hawkins, A. R. Electromagnetically induced transparency in alkali atoms integrated on a semiconductor chip. Appl. Phys. Lett. 86, 032106 (2005).

    ADS  Article  Google Scholar 

  29. Briaudeau, S., Bloch, D. & Ducloy, M. Sub-Doppler spectroscopy in a thin film of resonant vapor. Phys. Rev. A 59, 3723–3735 (1999).

    ADS  Article  Google Scholar 

  30. Xu, Q., Almeida, V. R. & Lipson, M. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 29, 1626–1628 (2004).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Gaeta for helpful discussions and R. Brenning for assistance with chip fabrication. We acknowledge financial support by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Offices (DSO) Slow-Light Program and the Air Force Office of Scientific Research (AFOSR) contract #FA9550-05-1-0432 and the National Science Foundation (NSF) under grant ECS-0500602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Schmidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures 1 and 2 (PDF 457 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, W., Conkey, D., Wu, B. et al. Atomic spectroscopy on a chip. Nature Photon 1, 331–335 (2007). https://doi.org/10.1038/nphoton.2007.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.74

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing