Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Local polarization of tightly focused unpolarized light

Abstract

The polarization of light is important in a great variety of optical phenomena, ranging from transmission, reflection and scattering to polarimetric imaging of scenes and quantum-mechanical selection rules of atomic and molecular transitions. Among some less-well-known phenomena that illustrate the vectorial nature of light are the Pancharatnam1 (or geometric2) phase, singularities in the polarization pattern of clear sky3 and polarization of microwave background radiation4. Here, we examine the partial polarization of focused light. We experimentally demonstrate a rather surprising phenomenon, where the focusing of unpolarized light results in rings of full polarization in the focal plane of the focusing optics. The polarization rings are imaged with a resolution of <100 nm by probing the focal region using a gold nanoparticle.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Distribution of P3D in the focal plane of a high-NA lens.
Figure 2: Experimental set-up for mapping the degree of polarization.
Figure 3: Polarization by focusing.
Figure 4: Measured P2D for different values of the degree of polarization of the incident beam Pinc2D.
Figure 5: Influence of the axial electric-field component on P2D.

References

  1. Pancharatnam, S. Generalized theory of interference and its applications. Part I. Coherent pencils. Proc. Ind. Acad. Sci. A. 44, 247–262 (1956).

    MathSciNet  Article  Google Scholar 

  2. Hariharan, P. The geometric phase. In Prog. Opt., vol. 48 (ed. Wolf, E.) 149–201 (Elsevier, Amsterdam, The Netherlands, 2005).

    Google Scholar 

  3. Berry, M. V., Dennis, M. R. & Lee R. L. Jr. Polarization singularities in the clear sky. New J. Phys. 6, 162 (2004).

    ADS  Article  Google Scholar 

  4. Kovac, J. M. et al. Detection of polarization in the cosmic microwave background using DASI. Nature 420, 772–787 (2002).

    ADS  Article  Google Scholar 

  5. Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).

    ADS  Article  Google Scholar 

  6. Empedocles, S. A., Neuhauser, R. & Bawendi, M. G. Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy. Nature 399, 126–130 (1999).

    ADS  Article  Google Scholar 

  7. Sick, B., Hecht, B. & Novotny, L. Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett. 85, 4482–4485 (2000).

    ADS  Article  Google Scholar 

  8. Novotny, L., Beversluis, M. R., Youngworth, K. S. & Brown, T. G. Longitudinal field modes probed by single molecules. Phys. Rev. Lett. 86, 5251–5254 (2001).

    ADS  Article  Google Scholar 

  9. Youngworth, K. S. & Brown, T. G. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77–87 (2000).

    ADS  Article  Google Scholar 

  10. Dorn, R., Quabis, S. & Leuchs, G. Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003).

    ADS  Article  Google Scholar 

  11. Ellis, J. & Dogariu, A. Optical polarimetry of random fields. Phys. Rev. Lett. 95, 203905 (2005).

    ADS  Article  Google Scholar 

  12. Lindfors, K., Setälä, T., Kaivola, M. & Friberg, A. T. Degree of polarization in tightly focused optical fields. J. Opt. Soc. Am. A. 22, 561–568 (2005).

    ADS  Article  Google Scholar 

  13. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  14. Brosseau, C. Fundamentals of Polarized Light. A Statistical Optics Approach (Wiley, New York, 1998).

    Google Scholar 

  15. Setälä, T., Kaivola, M. & Friberg, A. T. Degree of polarization in near fields of thermal sources: effects of surface waves. Phys. Rev. Lett. 88, 123902 (2002).

    ADS  Article  Google Scholar 

  16. Setälä, T., Shevchenko, A., Kaivola, M. & Friberg, A. T. Degree of polarization for optical near fields. Phys. Rev. E 66, 016615 (2002).

    ADS  Article  Google Scholar 

  17. Brosseau, C. & Dogariu, A. Symmetry properties and polarization descriptors for an arbitrary electromagnetic wavefield. In Prog. Opt., vol. 49 (ed. Wolf, E.) 315–380 (Elsevier, Amsterdam, The Netherlands, 2006).

    Google Scholar 

  18. Ellis, J., Dogariu, A., Ponomarenko, S. & Wolf, E. Correlation matrix of a completely polarized, statistically stationary electromagnetic field. Opt. Lett. 29, 1536–1538 (2004).

    ADS  Article  Google Scholar 

  19. Kalkbrenner, T., Ramstein, M., Mlynek, J. & Sandoghdar, V. A single gold particle as a probe for apertureless scanning near-field optical microscopy. J. Microsc. 202, 72–76 (2001).

    MathSciNet  Article  Google Scholar 

  20. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

    Google Scholar 

  21. Wilson, T., Juškaitis, R. & Higdon, P. The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes. Opt. Commun. 141, 298–313 (1997).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors from TKK acknowledge financial support from the Academy of Finland, project numbers 201293 and 118074, and A.T.F. acknowledges the support of the Swedish Foundation for Strategic Research. J. Pekola and O. Hahtela are thanked for loans of equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klas Lindfors.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lindfors, K., Priimagi, A., Setälä, T. et al. Local polarization of tightly focused unpolarized light. Nature Photon 1, 228–231 (2007). https://doi.org/10.1038/nphoton.2007.30

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.30

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing