Abstract
Tropical Morpho butterflies are famous for their brilliant iridescent colours, which arise from ordered arrays of scales on their wings. Here we show that the iridescent scales of the Morpho sulkowskyi butterfly give a different optical response to different individual vapours, and that this optical response dramatically outperforms that of existing nano-engineered photonic sensors. The reflectance spectra of the scales provide information about the nature and concentration of the vapours, allowing us to identify a range of closely related vapours–water, methanol, ethanol and isomers of dichloroethylene when they are analysed individually. By comparing the reflectance as a function of time for different vapours, we deduce that wing regions with scale structures of differing spatial periodicity give contributions to the overall spectral response at different wavelengths. Our optical model explains the effect of different components of the wing scales on the vapour response, and could steer the design of new man-made optical gas sensors.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Ghiradella, H. Hairs, bristles, and scales, in Microscopical Anatomy of Invertebrates (ed. Locke, M.) 257–287 (Wiley-Liss, New York, 1998).
Vukusic, P., Sambles, J. R. & Lawrence, C. R. Structural colour: Colour mixing in wing scales of a butterfly. Nature 404, 457 (2000).
Srinivasarao, M. Nano-optics in the biological world: Beetles, butterflies, birds, and moths. Chem. Rev. 99, 1935–1961 (1999).
Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).
Tabata, H. Structurally colored fibers and applications, in Structural Colors in Biological Systems. Principles and Applications (eds Kinoshita, S. & Yoshioka, S.) 297–308 (Osaka Univ. Press, Osaka, 2005).
Watanabe, K. et al. Optical measurement and fabrication from a morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition. J. Vac. Sci. Technol. B. 23, 570–574 (2005).
Zhang, J. -Z., Gu, Z. -Z., Chen, H. -H., Fujishima, A. & Sato, O. Inverse Morpho butterfly: A new approach to photonic crystal. J. Nanosci. Nanotechnol. 6, 1173–1176 (2006).
Huang, J., Wang, X. & Wang, Z. L. Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 6, 2325–2331 (2006).
Vukusic, P., Sambles, J. R., Lawrence, C. R. & Wootton, R. J. Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. B 266, 1403–1411 (1999).
Holtz, J. H. & Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997).
Lin, V. S. -Y., Motesharei, K., Dancil, K.-P. S., Sailor, M. J. & Ghadiri, M. R. A porous silicon-based optical interferometric biosensor. Science 278, 840–843 (1997).
Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).
Li, Y. Y. et al. Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299, 2045–2047 (2003).
Wehrspohn, R. B. et al. Application of photonic crystals for gas detection and sensing, in Photonic Crystals (ed. Busch, K.) 238–246 (Wiley-VCH, Weinheim, 2004).
Benabid, F., Couny, F., Knight, J. C., Birks, T. A. & Russell, P. S. J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488–491 (2005).
West, J. L. & Halas, N. J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285–292 (2003).
Van Duyne, R. P. Molecular plasmonics. Science 306, 985–986 (2004).
Amarie, D., Onuta, T. -D., Potyrailo, R. & Dragnea, B. Submicrometer cavity surface plasmon sensors. J. Phys. Chem. B. 109, 15515–15519 (2005).
Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature 399, 766–769 (1999).
Convertino, A., Capobianchi, A., Valentini, A. & Cirillo, E. N. M. A new approach to organic solvent detection: High-reflectivity Bragg reflectors based on a gold nanoparticle/Teflon-like composite material. Adv. Mater. 15, 1103–1105 (2003).
Snow, P. A., Squire, E. K., Russell, P. S. J. & Canham, L. T. Vapor sensing using the optical properties of porous silicon Bragg mirrors. J. Appl. Phys. 86, 1781–1784 (1999).
Gao, J., Gao, T. & Sailor, M. J. Porous-silicon vapor sensor based on laser interferometry. Appl. Phys. Lett. 77, 901–903 (2000).
Gao, T., Gao, J. & Sailor, M. J. Tuning the response and stability of thin film mesoporous silicon vapor sensors by surface modification. Langmuir 18, 9953–9957 (2002).
Potyrailo, R. A. Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools? Angew. Chem. Int. Edn 45, 702–723 (2006).
Bailey, R. C. & Hupp, J. T. Large-scale resonance amplification of optical sensing of volatile compounds with chemoresponsive visible-region diffraction gratings. J. Am. Chem. Soc. 124, 6767–6774 (2002).
Vincent, J. F. V. Deconstructing the design of a biological material. J. Theor. Biol. 236, 73–78 (2005).
Kinoshita, S., Yoshioka, S., Fujii, Y. & Okamoto, N. Photophysics of structural color in the Morpho butterflies. Forma 17, 103–121 (2002).
Kinoshita, S. & Yoshioka, S. Photophysical approach to blue coloring in the Morpho butterflies, in Structural Colors in Biological Systems. Principles and Applications (eds Kinoshita, S. & Yoshioka, S.) 113–140 (Osaka Univ. Press, Osaka, 2005).
Gralak, B., Tayeb, G. & Enoch, S. Morpho butterflies wings color modeled with lamellar grating theory. Opt. Express 9, 567–578 (2001).
Larkin, J. E., Frank, B. C., Gavras, H., Sultana, R. & Quackenbush, J. Independence and reproducibility across microarray platforms. Nature Methods 2, 337–344 (2005).
Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).
Grate, J. W. Acoustic wave microsensor arrays for vapor sensing. Chem. Rev. 100, 2627–2648 (2000).
Lewis, N. S. Comparisons between mammalian and artificial olfaction based on arrays of carbon black–polymer composite vapor detectors. Acc. Chem. Res. 37, 663–672 (2004).
Schmidt, J., Kleffmann, T. & Schaub, G. A. Hydrophobic attachment of Trypanosoma cruzi to a superficial layer of the rectal cuticle in the bug Triatoma infestans. Parasitol. Res. 84, 527–536 (1998).
Dickinson, T. A., White, J., Kauer, J. S. & Walt, D. R. A chemical-detecting system based on a cross-reactive optical sensor array. Nature 382, 697–700 (1996).
Gu, Z. -Z. et al. Structural color and the lotus effect. Angew. Chem. Int. Edn 42, 894–897 (2003).
Jin, R. et al. Photo-induced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).
Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).
Gregg, S. J. & Sing, K. S. W. Adsorption, Surface Area and Porosity (Academic Press, London, 1982).
Létant, S. E. & Sailor, M. J. Molecular identification by time-resolved interferometry in a porous silicon film. Adv. Mater. 5, 335–338 (2001).
De Stefano, L., Moretti, L., Rendina, I. & Rossi, A. M. Quantitative optical sensing in two-component mixtures using porous silicon microcavities. Phys. Stat. Sol. A 5, 1011–1016 (2004).
Hsieh, M. -D. & Zellers, E. T. Limits of recognition for simple vapor mixtures determined with a microsensor array. Anal. Chem. 76, 1885–1895 (2004).
Ray, N. H. Gas chromatography. Nature 180, 403–405 (1957).
Grate, J. W., Rose-Pehrsson, S. L., Venezky, D. L., Klusty, M. & Wohltjen, H. Smart sensor system for trace organophosphorus and organosulfur vapor detection employing a temperature-controlled array of surface acoustic wave sensors, automated sample preconcentration, and pattern recognition. Anal. Chem. 65, 1868–1881 (1993).
Wong, T. -H., Gupta, M. C., Robins, B. & Levendusky, T. L. Color generation in butterfly wings and fabrication of such structures. Opt. Lett. 28, 2342–2344 (2003).
Watanabe, K., Hoshino, T., Kanda, K., Haruyama, Y. & Matsui, S. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn J. Appl. Phys. 44, L48–L50 (2005).
Zhang, W. et al. Fabrication of ZnO microtubes with adjustable nanopores on the walls by the templating of butterfly wing scales. Nanotechnology 17, 840–844 (2006).
Potyrailo, R. A. & Pickett, J. E. High-throughput multilevel performance screening of advanced materials. Angew. Chem. Int. Edn 41, 4230–4233 (2002).
Acknowledgements
Special thanks go to T. Leib, A. Linsebigler and E.A. Williams for encouragement, to P. Jiang, I. Lednev, S. Ostrowski, V. Smentkowski, D. Stavenga, P. Vukusic and S. Yoshioka for helpful comments, and to R. Oudt for help with graphics. This work has been supported in part from General Electric's fundamental research funds.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information; Figures S1 and S2 (PDF 95 kb)
Rights and permissions
About this article
Cite this article
Potyrailo, R., Ghiradella, H., Vertiatchikh, A. et al. Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photon 1, 123–128 (2007). https://doi.org/10.1038/nphoton.2007.2
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2007.2
This article is cited by
-
High-resolution three-dimensional structural determination of unstained double-gyroid block copolymers through scanning transmission electron microscopy
Scientific Reports (2023)
-
Effect of Diameter, Length, and Chirality on the Properties of Silicon Nanotubes
Silicon (2022)
-
Colorful patterned organic–inorganic hybrid silica films with a cholesteric structure
Journal of Sol-Gel Science and Technology (2022)
-
Analysis of the optical properties of the silvery spots on the wings of the Gulf Fritillary, Dione vanillae
Scientific Reports (2021)
-
Frontiers of light manipulation in natural, metallic, and dielectric nanostructures
La Rivista del Nuovo Cimento (2021)