Abstract
We report the first demonstration of a low-threshold continuous-wave (c.w.) Raman silicon laser based on a ring-resonator-cavity configuration. We achieved a lasing threshold of 20 mW, slope efficiency of 28% and an output power of 50 mW, with a 25 V reverse bias applied to the p-i-n silicon waveguides. This represents nearly a tenfold improvement in the lasing threshold and more than a fivefold improvement in both slope efficiency and output power over previous results. In addition, we demonstrate for the first time c.w. lasing with zero bias voltage. In this arrangement, the laser does not require an external electrical power supply, and we obtained a lasing threshold of 26 mW and laser output power exceeding 10 mW. The realization of low-threshold lasing and lasing with no external bias is a major advance towards producing practical silicon lasers based on stimulated Raman scattering, for applications ranging from telecommunications and interconnects to optical sensing and biomedical applications.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Prospects and applications of on-chip lasers
eLight Open Access 04 January 2023
-
Broadband high-Q multimode silicon concentric racetrack resonators for widely tunable Raman lasers
Nature Communications Open Access 20 June 2022
-
Experimental demonstration of a reconfigurable electro-optic directed logic circuit using cascaded carrier-injection micro-ring resonators
Scientific Reports Open Access 25 July 2017
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Reed, G. T. The optical age of silicon. Nature 427, 595–596 (2004).
Reed, G. T. & Knights, A. P. Silicon Photonics: An Introduction (Wiley, Chichester, 2004).
Pavesi, L. & Lockwood, D. J. (eds) Silicon Photonics (Springer, Berlin/Heidelberg/New York, 2004).
Pavesi, L. & Guillot, G. (eds) Optical Interconnects—The Silicon Approach (Springer, Berlin/Heidelberg/New York, 2006).
Chow, E., Grot, A., Mirkarimi, L. W., Sigalas, M. & Girolami, G. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 29, 1093–1095 (2004).
Schmidt, B., Almeida, V., Manolatou, C., Preble, S. & Lipson, M. Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection. Appl. Phys. Lett. 85, 4854–4856 (2004).
Liu, A. et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004).
Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J. & Lipson, M. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 15, 430–436 (2007).
Liu, A. et al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15, 660–668 (2007).
Liu, J. et al. High performance, tensile-strained Ge p-i-n photodetectors on a Si platform. Appl. Phys. Lett. 87, 103501 (2005).
Morse, M., Dosunmu, O., Sarid, G. & Chetrit, Y. Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules. IEEE Photon. Technol. Lett. 18, 2442–2444 (2006).
Rong, H., Kuo, Y.-H., Liu, A., Cohen, O. & Paniccia, M. High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides. Opt. Express 14, 1182–1188 (2006).
Yamada, K. et al. All-optical efficient wavelength conversion using silicon photonic wire waveguide. IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).
Kuo, Y.-H. et al. Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. Opt. Express 14, 11721–11726 (2006).
Pavesi, L., Gaponenko, S. & Dal Negro, L. (eds). Towards the First Silicon Laser, NATO Science Series (Kluwer, Dordrecht, 2003).
Liu, A., Rong, H., Paniccia, M., Cohen, O. & Hak, D. Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 12, 4261–4267 (2004).
Xu, Q., Almeida, V. & Lipson, M. Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides. Opt. Express 12, 4437–4442 (2004).
Liang, T. K. & Tsang, H. K. Efficient Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 85, 3343–3345 (2004).
Boyraz, O. & Jalali, B. Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier. IEICE Elect. Express 1, 429–434 (2004).
Jones, R. et al. Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 13, 519–525 (2005).
Chen, X., Panoiu, N. C. & Osgood, R. M. Jr. Theory of Raman-mediated pulsed amplification in silicon-wire waveguides. IEEE J. Quant. Electron. 42, 160–170 (2006).
Liu, Y. & Tsang, H. K. Nonlinear absorption and Raman gain in helium ion implanted silicon. Opt. Lett. 31, 1714–1716 (2006).
Fathpour, S., Tsia, K. K. & Jalali, B. Energy harvesting in silicon Raman amplifiers. Appl. Phys. Lett. 89, 061109 (2006).
Sih, V. et al. Raman amplification of 40 Gb/s data in low-loss silicon waveguides. Opt. Express 15, 357–362 (2007).
Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).
Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).
Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).
Liu, A. et al. Optical amplification and lasing by stimulated Raman scattering in silicon waveguides. J. Lightwave Technol. 24, 1440–1455 (2006).
Rong, H. et al. Monolithic integrated Raman silicon laser. Opt. Express 14, 6705–6712 (2006).
Liang, T. K. & Tsang, H. K. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 84, 2745–2747 (2004).
Rong, H. et al. Raman gain and nonlinear optical absorption measurement in a low loss silicon waveguide. Appl. Phys. Lett. 85, 2196–2198 (2004).
Claps, R., Raghunathan, V., Dimitropoulos, D. & Jalali, B. Role of nonlinear absorption on Raman amplification in silicon waveguides. Opt. Express 12, 2774–2780 (2004).
Headley, W. R., Reed, G. T., Howe, S., Liu, A. & Paniccia, M. Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator. Appl. Phys. Lett. 85, 5523–5525 (2004).
Adar, R. et al. Measurement of very low-loss silica on silicon waveguides with a ring resonator. Appl. Phys. Lett. 58, 444–445 (1991).
Soref, R. A. & Lorenzo, P. J. All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm. IEEE J. Quant. Electron. QE-22, 873–879 (1986).
Baney, D. M. & Sorin, W. V. in Fiber Optic Test and Measurement 169–219 (ed. Derickson, D.) (Prentice-Hall, Englewood Cliffs, 1998).
Henry, C. H. Theory of the linewidth of semiconductor lasers. IEEE J. Quant. Electron. QE-18, 259–264 (1982).
Naeini, J. G. & Ahmad, K. Raman fiber laser with two parallel couplers. Opt. Eng. 44, 064203 1–4 (2005).
Kippenberg, T. J., Spillane, S. M., Min, B. & Vahala, K. J. Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities. IEEE J. Sel. Top. Quant. Electron. 10, 1219–1228 (2004).
Krause, M., Draheim, R., Renner H. & Brinkmeyer, E. Cascaded silicon Raman lasers as mid-infrared sources. Electron. Lett. 42, 1224–1226 (2006).
Vermeulen, N., Debaes, C. & Thienpont, H. Modeling mid-infrared continuous-wave silicon-based Raman lasers. Proc. SPIE Photonics West, Paper [6455-23], San Jose, 2007.
Sorokina, I. T. & Vodopyanov, K. L. (eds) Solid-State Mid-Infrared Laser Sources (Springer, Berlin/Heidelberg, 2003).
Acknowledgements
We thank A. Liu, R. Jones, G. T. Reed and J. E. Bowers for helpful discussions and N. Izhaky, A. Alduino, D. Tran, K. Callegari, J. C. Jimenez, N. Ziharev and J. Ngo for assistance in device fabrication and sample preparation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Rong, H., Xu, S., Kuo, YH. et al. Low-threshold continuous-wave Raman silicon laser. Nature Photon 1, 232–237 (2007). https://doi.org/10.1038/nphoton.2007.29
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2007.29
This article is cited by
-
Prospects and applications of on-chip lasers
eLight (2023)
-
Broadband high-Q multimode silicon concentric racetrack resonators for widely tunable Raman lasers
Nature Communications (2022)
-
Enhanced Raman gain coefficients of semiconductor magneto-plasmas
Applied Physics A (2022)
-
Steady-State and Transient Raman Gain Coefficients of Semiconductor Magneto-plasmas (Calculated for n-InSb-CO2 Laser System)
Iranian Journal of Science and Technology, Transactions A: Science (2022)
-
Experimental demonstration of a reconfigurable electro-optic directed logic circuit using cascaded carrier-injection micro-ring resonators
Scientific Reports (2017)