Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity


Photonic crystals, materials with periodic dielectric structures, are able to control the propagation states of photons owing to the so-called photonic-bandgap effect1. Nonlinear photonic crystals, whose refractive-index distribution can be tuned optically, have been used to demonstrate all-optical switching2. However, a high pump intensity is usually required because the nonlinear optical coefficient of conventional materials is relatively small3. Here we report ultrafast and low-power photonic-crystal all-optical switching based on strong optical nonlinearity enhancement due to excited-state interelectron transfer. Compared with the case without nonlinearity enhancement, the switching operation power is reduced by four orders of magnitude while the ultrafast response time, of the order of a picosecond, is maintained. This provides a strategy for constructing photonic materials with large nonlinearity and studying ultrafast low-power integrated photonic devices.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Scanning-electron-microscopy (SEM) images of the photonic-bandgap microcavity.
Figure 2: Experimental set-up.
Figure 3: Resonant mode of the photonic-bandgap microcavity.
Figure 4: Transmittance changes of the probe light as functions of the time delay between pump and probe pulses.
Figure 5: Transmittance spectra of the microcavity resonant mode as functions of the energy of the pump light.


  1. Chow, E. et al. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature 407, 983–986 (2000).

    ADS  Article  Google Scholar 

  2. Scalora, M., Dowling, J. P., Bowden, C. M. & Bloemer, M. J. Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials. Phys. Rev. Lett. 73, 1368–1371 (1994).

    ADS  Article  Google Scholar 

  3. Barthelemy, P. et al. Optical switching by capillary condensation. Nature Photon. 1, 172–175 (2007).

    ADS  Article  Google Scholar 

  4. Lan, S. & Ishilawa, H. Coupling of defect pairs and generation of dynamical band gaps in the impurity bands of nonlinear photonic crystals for all-optical switching. J. Appl. Phys. 91, 2573–2577 (2002).

    ADS  Article  Google Scholar 

  5. Wang, X., Kempa, K. & Ren, Z. F. Rapid photon flux switching in two-dimensional photonic crystals. Appl. Phys. Lett. 84, 1817–1819 (2004).

    ADS  Article  Google Scholar 

  6. Shimizu, M. & Ishihara, T. Subpicosecond transmission change in semiconductor-embedded photonic crystal slab: toward ultrafast optical switching. Appl. Phys. Lett. 80, 2836–2838 (2002).

    ADS  Article  Google Scholar 

  7. Hache, A. & Bourgeois, M. Ultrafast all-optical switching in a silicon-based photonic crystal. Appl. Phys. Lett. 77, 4089–4091 (2000).

    ADS  Article  Google Scholar 

  8. Leonard, S. W., van Driel, H. M., Schilling, J. & Wehrspohn, R. B. Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection. Phys. Rev. B 66, 161102(R) (2002).

    ADS  Article  Google Scholar 

  9. Mazurenko, D. A. et al. Ultrafast optical switching in three-dimensional photonic crystals. Phys. Rev. Lett. 91, 213903 (2003).

    ADS  Article  Google Scholar 

  10. Soljacic, M., Lidorikis, E. & Joannopoulos, J. D. Ultralow-power all-optical switching. Appl. Phys. Lett. 86, 171101 (2005).

    ADS  Article  Google Scholar 

  11. Kim, M. K., Hwand, I. K., Kim, S. H., Chang, H. J. & Lee, Y. H. All-optical bistable switching in curved microfiber-coupled photonic crystal resonators. Appl. Phys. Lett. 90, 161118 (2007).

    ADS  Article  Google Scholar 

  12. Hu, X. Y., Gong, Q. H., Liu, Y. H., Cheng, B. Y. & Zhang, D. Z. All-optical switching of defect mode in two-dimensional nonlinear organic photonic crystals. Appl. Phys. Lett. 87, 231111 (2005).

    ADS  Article  Google Scholar 

  13. Katouf, R., Komikado, T., Itoh, M., Yatagai, T. & Umegaki, S. Ultra-fast optical switches using 1D polymeric photonic crystals. Photon. Nanostructures: Fundamental Applications 3, 116–119 (2005).

    Article  Google Scholar 

  14. Hu, X. Y., Gong, Q. H., Liu, Y. H., Cheng, B. Y. & Zhang, D. Z. Fabrication of two-dimensional organic photonic crystal filter. Appl. Phys. B 81, 779–781 (2005).

    ADS  Article  Google Scholar 

  15. Inoue, S. & Aoyagi, Y. Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties. Phys. Rev. Lett. 94, 103904 (2005).

    ADS  Article  Google Scholar 

  16. Lachab, M. et al. Selective fabrication of InGaN nanostructures by the focused ion beam/metalorganic chemical vapor deposition process. J. Appl. Phys. 87, 1374–1378 (2000).

    ADS  Article  Google Scholar 

  17. Liguda, C. et al. Polymer photonic crystal slab waveguides. Appl. Phys. Lett. 78, 2434–2436 (2001).

    ADS  Article  Google Scholar 

  18. Li, L. M. & Zhang, Z. Q. Multiple-scattering approach to finite-sized photonic band-gap materials. Phys. Rev. B 58, 9587–9590 (1998).

    ADS  Article  Google Scholar 

  19. Chung, K. B. & Kim, S. H. Defect modes in a two-dimensional square-lattice photonic crystal. Opt. Commun. 209, 229–235 (2002).

    ADS  Article  Google Scholar 

  20. Bradley, D. D. C. & Mori, Y. Third harmonic generation in precursor route poly(p-phenylene vinylene). Jpn J. Appl. Phys. 28, 174–177 (1989).

    ADS  Article  Google Scholar 

  21. Kovalenko, S. A., Ruthmann, J. & Ernsting, N. P. Ultrafast strokes shift and excited-state transient absorption of coumarin 153 in solution. Chem. Phys. Lett. 271, 40–50 (1997).

    ADS  Article  Google Scholar 

  22. Ma, G. H. et al. Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect. Physica B 305, 147–154 (2001).

    ADS  Article  Google Scholar 

  23. Rodenberger, D. C., Heflin, J. R. & Garito, A. F. Excited-state enhancement of optical nonlinearities in linear conjugated molecules. Nature 359, 309–311 (1992).

    ADS  Article  Google Scholar 

  24. Schneider, G. J. & Watson, G. H. Nonlinear optical spectroscopy in one-dimensional photonic crystals. Appl. Phys. Lett. 83, 5350–5352 (2003).

    ADS  Article  Google Scholar 

  25. Fischer, G. L. et al. Enhanced nonlinear optical response of composite materials. Phys. Rev. Lett. 74, 1871–1874 (1995).

    ADS  Article  Google Scholar 

  26. Prineas, J. P. et al. Ultrafast ac stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells. Appl. Phys. Lett. 81, 4332–4334 (2002).

    ADS  Article  Google Scholar 

  27. Kohtani, S., Murate, M. & Itoh, M. Resonance energy transfer from the excited singlet state of dye molecules to a stable free radical. Chem. Phys. Lett. 247, 293–298 (1995).

    ADS  Article  Google Scholar 

  28. Gong, Q. H., Xia, Z. J. & Zou, Y. H. Large nonresonant third-order hyperpolarizabilities of organic charge-transfer complexes. Appl. Phys. Lett. 59, 381–383 (1991).

    ADS  Article  Google Scholar 

  29. Schill, A. W., Gaddis, C. S., Qian, W. & Elsayed, M. A. Ultrafast electronic relaxation and charge-carrier localization in CdS/CdSe/CdS quantum-dot quantum-well heterostructures. Nano Lett. 6, 1940–1949 (2006).

    ADS  Article  Google Scholar 

  30. Weng, X., Kostoulas, Y. & Fauchet, P. M. Femtosecond excited-state dynamics of a conjugated ladder polymer. Phys. Rev. B 51, 6838–6841 (1995).

    ADS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China under grants 10574007, 10521002 and 10434020, and the National Basic Research Program of China under grant 2007CB307001.

Author information

Authors and Affiliations



X.H., P.J., H.Y. and C.D. carried out the experiments. X.H. made the main contribution to the experiments and data analysis. Q.G. conceived the experiments, wrote the manuscript and helped with the data analysis.

Corresponding author

Correspondence to Qihuang Gong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hu, X., Jiang, P., Ding, C. et al. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photon 2, 185–189 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing