Abstract
Photonic crystals, materials with periodic dielectric structures, are able to control the propagation states of photons owing to the so-called photonic-bandgap effect1. Nonlinear photonic crystals, whose refractive-index distribution can be tuned optically, have been used to demonstrate all-optical switching2. However, a high pump intensity is usually required because the nonlinear optical coefficient of conventional materials is relatively small3. Here we report ultrafast and low-power photonic-crystal all-optical switching based on strong optical nonlinearity enhancement due to excited-state interelectron transfer. Compared with the case without nonlinearity enhancement, the switching operation power is reduced by four orders of magnitude while the ultrafast response time, of the order of a picosecond, is maintained. This provides a strategy for constructing photonic materials with large nonlinearity and studying ultrafast low-power integrated photonic devices.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
Spontaneous emission in micro- or nanophotonic structures
PhotoniX Open Access 16 September 2021
-
Dual-shot dynamics and ultimate frequency of all-optical magnetic recording on GdFeCo
Light: Science & Applications Open Access 06 January 2021
-
Mimicking bio-mechanical principles in photonic metamaterials for giant broadband nonlinearity
Communications Physics Open Access 08 May 2020
Access options
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.





References
Chow, E. et al. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature 407, 983–986 (2000).
Scalora, M., Dowling, J. P., Bowden, C. M. & Bloemer, M. J. Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials. Phys. Rev. Lett. 73, 1368–1371 (1994).
Barthelemy, P. et al. Optical switching by capillary condensation. Nature Photon. 1, 172–175 (2007).
Lan, S. & Ishilawa, H. Coupling of defect pairs and generation of dynamical band gaps in the impurity bands of nonlinear photonic crystals for all-optical switching. J. Appl. Phys. 91, 2573–2577 (2002).
Wang, X., Kempa, K. & Ren, Z. F. Rapid photon flux switching in two-dimensional photonic crystals. Appl. Phys. Lett. 84, 1817–1819 (2004).
Shimizu, M. & Ishihara, T. Subpicosecond transmission change in semiconductor-embedded photonic crystal slab: toward ultrafast optical switching. Appl. Phys. Lett. 80, 2836–2838 (2002).
Hache, A. & Bourgeois, M. Ultrafast all-optical switching in a silicon-based photonic crystal. Appl. Phys. Lett. 77, 4089–4091 (2000).
Leonard, S. W., van Driel, H. M., Schilling, J. & Wehrspohn, R. B. Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection. Phys. Rev. B 66, 161102(R) (2002).
Mazurenko, D. A. et al. Ultrafast optical switching in three-dimensional photonic crystals. Phys. Rev. Lett. 91, 213903 (2003).
Soljacic, M., Lidorikis, E. & Joannopoulos, J. D. Ultralow-power all-optical switching. Appl. Phys. Lett. 86, 171101 (2005).
Kim, M. K., Hwand, I. K., Kim, S. H., Chang, H. J. & Lee, Y. H. All-optical bistable switching in curved microfiber-coupled photonic crystal resonators. Appl. Phys. Lett. 90, 161118 (2007).
Hu, X. Y., Gong, Q. H., Liu, Y. H., Cheng, B. Y. & Zhang, D. Z. All-optical switching of defect mode in two-dimensional nonlinear organic photonic crystals. Appl. Phys. Lett. 87, 231111 (2005).
Katouf, R., Komikado, T., Itoh, M., Yatagai, T. & Umegaki, S. Ultra-fast optical switches using 1D polymeric photonic crystals. Photon. Nanostructures: Fundamental Applications 3, 116–119 (2005).
Hu, X. Y., Gong, Q. H., Liu, Y. H., Cheng, B. Y. & Zhang, D. Z. Fabrication of two-dimensional organic photonic crystal filter. Appl. Phys. B 81, 779–781 (2005).
Inoue, S. & Aoyagi, Y. Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties. Phys. Rev. Lett. 94, 103904 (2005).
Lachab, M. et al. Selective fabrication of InGaN nanostructures by the focused ion beam/metalorganic chemical vapor deposition process. J. Appl. Phys. 87, 1374–1378 (2000).
Liguda, C. et al. Polymer photonic crystal slab waveguides. Appl. Phys. Lett. 78, 2434–2436 (2001).
Li, L. M. & Zhang, Z. Q. Multiple-scattering approach to finite-sized photonic band-gap materials. Phys. Rev. B 58, 9587–9590 (1998).
Chung, K. B. & Kim, S. H. Defect modes in a two-dimensional square-lattice photonic crystal. Opt. Commun. 209, 229–235 (2002).
Bradley, D. D. C. & Mori, Y. Third harmonic generation in precursor route poly(p-phenylene vinylene). Jpn J. Appl. Phys. 28, 174–177 (1989).
Kovalenko, S. A., Ruthmann, J. & Ernsting, N. P. Ultrafast strokes shift and excited-state transient absorption of coumarin 153 in solution. Chem. Phys. Lett. 271, 40–50 (1997).
Ma, G. H. et al. Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect. Physica B 305, 147–154 (2001).
Rodenberger, D. C., Heflin, J. R. & Garito, A. F. Excited-state enhancement of optical nonlinearities in linear conjugated molecules. Nature 359, 309–311 (1992).
Schneider, G. J. & Watson, G. H. Nonlinear optical spectroscopy in one-dimensional photonic crystals. Appl. Phys. Lett. 83, 5350–5352 (2003).
Fischer, G. L. et al. Enhanced nonlinear optical response of composite materials. Phys. Rev. Lett. 74, 1871–1874 (1995).
Prineas, J. P. et al. Ultrafast ac stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells. Appl. Phys. Lett. 81, 4332–4334 (2002).
Kohtani, S., Murate, M. & Itoh, M. Resonance energy transfer from the excited singlet state of dye molecules to a stable free radical. Chem. Phys. Lett. 247, 293–298 (1995).
Gong, Q. H., Xia, Z. J. & Zou, Y. H. Large nonresonant third-order hyperpolarizabilities of organic charge-transfer complexes. Appl. Phys. Lett. 59, 381–383 (1991).
Schill, A. W., Gaddis, C. S., Qian, W. & Elsayed, M. A. Ultrafast electronic relaxation and charge-carrier localization in CdS/CdSe/CdS quantum-dot quantum-well heterostructures. Nano Lett. 6, 1940–1949 (2006).
Weng, X., Kostoulas, Y. & Fauchet, P. M. Femtosecond excited-state dynamics of a conjugated ladder polymer. Phys. Rev. B 51, 6838–6841 (1995).
Acknowledgements
This work was supported by the National Natural Science Foundation of China under grants 10574007, 10521002 and 10434020, and the National Basic Research Program of China under grant 2007CB307001.
Author information
Authors and Affiliations
Contributions
X.H., P.J., H.Y. and C.D. carried out the experiments. X.H. made the main contribution to the experiments and data analysis. Q.G. conceived the experiments, wrote the manuscript and helped with the data analysis.
Corresponding author
Rights and permissions
About this article
Cite this article
Hu, X., Jiang, P., Ding, C. et al. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photon 2, 185–189 (2008). https://doi.org/10.1038/nphoton.2007.299
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2007.299
Further reading
-
Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics
Nature Photonics (2022)
-
Design and analysis of miniaturized all-optical binary to gray code converter using Y-shaped plasmonic waveguide for optical processors
Photonic Network Communications (2022)
-
A novel structure of all-optical optimised NAND, NOR and XNOR logic gates employing a Y-shaped plasmonic waveguide for better performance and high-speed computations
Optical and Quantum Electronics (2022)
-
Spontaneous emission in micro- or nanophotonic structures
PhotoniX (2021)
-
Dual-shot dynamics and ultimate frequency of all-optical magnetic recording on GdFeCo
Light: Science & Applications (2021)