Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A femtosecond X-ray/optical cross-correlator

Abstract

For a fundamental understanding of ultrafast dynamics in chemistry, biology and materials science it has been a long-standing dream to record a molecular movie in which both the atomic trajectories and the chemical states of every atom in matter are followed in real time1. Free-electron lasers provide this perspective as they deliver brilliant femtosecond X-ray pulses spanning a wide photon energy range, which is necessary to gather element-specific and chemical-state-selective information with femtosecond time resolution. The key challenge lies in synchronizing the free-electron lasers with separate optical lasers. We exploit the peak brilliance of the free-electron laser in Hamburg2,3 (FLASH) and establish X-ray- pulse-induced transient changes of the optical reflectivity in GaAs as a powerful tool for X-ray/optical cross-correlation. This constitutes a breakthrough in the path towards recording a molecular movie and—equally importantly—opens up the field of femtosecond X-ray-induced dynamics, only accessible with high-brilliance X-ray free-electron lasers.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Transient X-ray-induced optical reflectivity (ΔR/R) measurement: schematic overview.
Figure 2: Transient X-ray-induced optical reflectivity (ΔR/R): temporal characteristics.
Figure 3: Transient X-ray induced optical reflectivity (ΔR/R): energy dependence.
Figure 4: X-ray pulse arrival for 30 FEL radiation pulses (500 kHz repetition rate) relative to 800-nm laser pulses.
Figure 5: Femtosecond X-ray/optical delay monitor.

References

  1. Zewail, A. H. Femtochemistry: Atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).

    Article  Google Scholar 

  2. Ayvazyan, V. et al. First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. D 37, 297–303 (2006).

    ADS  Article  Google Scholar 

  3. Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photonics 1, 336–342 (2007).

    ADS  Article  Google Scholar 

  4. Diels, J. C. & Rudolph, W. Ultrashort Laser Pulse Phenomena 2nd edn (Academic, London, 2006).

  5. Chang, Z., Rundquist, A., Wang, H., Murnane, M. M. & Kapteyn, H. C. Generation of coherent soft X rays at 2.7 nm using high harmonics. Phys. Rev. Lett. 79, 2967–2970 (1997).

    ADS  Article  Google Scholar 

  6. Steinmeyer, G., Sutter, D. H., Gallmann, L., Matuschek, N. & Keller, U. Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics. Science 286, 1507–1512 (1999).

    Article  Google Scholar 

  7. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    ADS  Article  Google Scholar 

  8. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    ADS  Article  Google Scholar 

  9. Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    ADS  Article  Google Scholar 

  10. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    ADS  Article  Google Scholar 

  11. Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

    ADS  Article  Google Scholar 

  12. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    ADS  Article  Google Scholar 

  13. Sokolowski-Tinten, K. et al. Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287–289 (2003).

    ADS  Article  Google Scholar 

  14. Bargheer, M., Zhavoronkov, N., Woerner, M. & Elsaesser, T. Recent progress in ultra fast X-ray diffraction. Chem. Phys. Chem. 7, 783–792 (2006).

    Article  Google Scholar 

  15. Fritz, D. M. et al. Ultra fast bond softening in bismuth: Mapping a solid's interatomic potential with X-rays. Science 315, 633–636 (2007).

    ADS  Article  Google Scholar 

  16. Madey, J. M. J. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971).

    ADS  Article  Google Scholar 

  17. Deacon, D. A. G. et al. First operation of a free-electron laser. Phys. Rev. Lett. 38, 892–894 (1977).

    ADS  Article  Google Scholar 

  18. Kondratenko, A. M. & Saldin, E. L. Generation of coherent radiation by a relativistic electron beam in an undulator. Soviet Phys. Doklady 24, 986–988 (1979).

    ADS  Google Scholar 

  19. Kondratenko, A. M. & Saldin, E. L. Generation of coherent radiation by a relativistic electron beam in an ondulator. Part. Acc. 10, 207–216 (1980).

    Google Scholar 

  20. Bonifacio, R., Pellegrini, C. & Narducci, L. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984).

    ADS  Article  Google Scholar 

  21. Föhlisch, A. et al. Beyond the chemical shift: Vibrationally resolved core-level photoelectron spectra of adsorbed CO. Phys. Rev. Lett. 81, 1730–1733 (1998).

    ADS  Article  Google Scholar 

  22. Föhlisch, A. et al. How carbon monoxide adsorbs in different sites. Phys. Rev. Lett. 85, 3309–3312 (2000).

    ADS  Article  Google Scholar 

  23. Lau, J. T., Föhlisch, A., Nietubyc, R., Reif, M. & Wurth, W. Size-dependent magnetism of deposited small iron clusters studied by X-ray magnetic circular dichroism. Phys. Rev. Lett. 89, 0572011 (2002).

    Article  Google Scholar 

  24. Föhlisch, A. et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005).

    ADS  Article  Google Scholar 

  25. Lis, D. C., Blake, G. A. & Herbst, E. Astrochemistry: Recent Successes and Current Challenges (International Astronomical Union, Cambridge Univ. Press, Cambridge, 2006).

    Google Scholar 

  26. Greenberg, J. M. et al. Ultraviolet photoprocessing of interstellar dust mantles as a source of polycyclic aromatic hydrocarbons and other conjugated molecules. Astrophys J. 531, L71–L73 (2000).

    ADS  Article  Google Scholar 

  27. Cavalieri, A. L. et al. Clocking femtosecond X-rays. Phys. Rev. Lett. 94, 114801 (2005).

    ADS  Article  Google Scholar 

  28. Cunovic, S. et al. Time-to-space mapping in an gas medium for the temporal characterization of vacuum-ultraviolet pulses. Appl. Phys. Lett. 90, 121112 (2007).

    ADS  Article  Google Scholar 

  29. Radcliffe, P. et al. Single-shot characterization of independent femtosecond extreme ultraviolet free electron and infrared laser pulses. Appl. Phys. Lett. 90, 131108 (2007).

    ADS  Article  Google Scholar 

  30. Wellhöfer, M., Martins, M., Wurth, W., Sorokin, A. & Richter, M. Performance of the monochromator beamline at FLASH. J. Opt. A: Pure Appl. Opt. 9, 749–756 (2007).

    ADS  Article  Google Scholar 

  31. Richter, M. et al. Measurement of gigawatt radiation pulses from a vacuum and extreme ultraviolet free-electron laser. Appl. Phys. Lett. 83, 2970–2972 (2003).

    ADS  Article  Google Scholar 

  32. Düsterer, S. et al. Spectroscopic characterization of vacuum ultraviolet free electron laser pulses. Opt. Lett. 31, 1750–1752 (2006).

    ADS  Article  Google Scholar 

  33. Cavalleri, A. et al. Ultra fast X-ray measurement of laser heating in semiconductors: Parameters determining the melting threshold. Phys. Rev. B 63, 193306 (2001).

  34. Callan, J. P., Kim, A. M. T., Huang, L. & Mazur, E. Ultra fast electron and lattice dynamics in semiconductors at high excited carrier densities. Chem. Phys. 251, 167–179 (2000).

    Article  Google Scholar 

  35. Yeh, J.-J. & Lindau, I. Atomic subshell photo ionization cross sections and asymmetry parameters: 1 < Z < 103. At. Data Nucl. Data Tables 32, 1 (1985).

    ADS  Article  Google Scholar 

  36. Yeh, J.-J. Atomic Calculations of Photo ionization Cross Sections and Asymmetry Parameters (Gordon and Breach, Langhorne, Pennsylvania, 1993).

    Google Scholar 

  37. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92. At. Data Nucl. Data Tables 54, 181–342 (1993).

    ADS  Article  Google Scholar 

  38. Krause, M. O. & Oliver, J. H. Natural widths of atomic K and L levels, K alpha X-ray lines and several KLL auger lines. J. Phys. Chem. Ref. Data 8, 329–338 (1979).

    ADS  Article  Google Scholar 

  39. Krumrey, M. et al. Schottky type photodiodes as detectors in the VUV and soft X-ray range. Appl. Opt. 27, 4336–4341 (1988).

    ADS  Article  Google Scholar 

  40. Huang, L., Callan, J. P., Glezer, E. N. & Mazur, E. GaAs under intense ultra fast excitation: Response of the dielectric function. Phys. Rev. Lett. 80, 185–188 (1998).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We dedicate this manuscript to our suddenly deceased co-worker Kai Starke, whose enthusiasm and competence was essential to initiate this work. We gratefully acknowledge support by the scientific and technical staff of the FLASH facility, in particular S. Düsterer, H. Redlin and R. Treusch. We thank C. Kumpf (University of Würzburg) for providing the GaAs samples. This work was supported by the German Ministry of Education and Research (BMBF) through grants nos. 05 KS4GU1/8 and 05 KS4GU1/9 and the Helmholtz Joint Research Centre ‘Physics with coherent radiation sources’.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mitsuru Nagasono or Alexander Föhlisch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gahl, C., Azima, A., Beye, M. et al. A femtosecond X-ray/optical cross-correlator. Nature Photon 2, 165–169 (2008). https://doi.org/10.1038/nphoton.2007.298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.298

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing