Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical phase conjugation for turbidity suppression in biological samples

Abstract

Elastic optical scattering, the dominant light-interaction process in biological tissues, prevents tissues from being transparent. Although scattering may appear stochastic, it is in fact deterministic in nature. We show that, despite experimental imperfections, optical phase conjugation (λ = 532 nm) can force a transmitted light field to retrace its trajectory through a biological target and recover the original light field. For a 0.69-mm-thick chicken breast tissue section, we can enhance point-source light return by a factor of 5×103 and achieve a light transmission enhancement factor of 3.8 within a collection angle of 29°. Additionally, we find that the reconstruction's quality, measured by the width of the reconstructed point source, is independent of tissue thickness (up to a thickness of 0.69 mm). This phenomenon may be used to enhance light transmission through tissue, enable measurement of small tissue movements, and form the basis of new tissue imaging techniques.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematics of TSOPC set-up and scattering medium.
Figure 2: Demonstration of the TSOPC phenomenon through a 0.46-mm-thick chicken breast tissue section.
Figure 3: TSOPC using point-source illumination.
Figure 4: Strength of the reconstructed light field under OPC and non-OPC conditions.
Figure 5: Quality of the reconstructed light field under OPC and non-OPC conditions.

References

  1. Cheong, W. F., Prahl, S. A. & Welch, A. J. A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26, 2166–2185 (1990).

    ADS  Article  Google Scholar 

  2. Leith, E. N. & Upatneiks, J. Holographic imagery through diffusing media. J. Opt. Soc. Am. 56, 523 (1966).

    Article  Google Scholar 

  3. Levenson, M. D. High-resolution imaging by wave-front conjugation. Opt. Lett. 5, 182–184 (1980).

    ADS  Article  Google Scholar 

  4. McFarlane, R. A. & Steel, D. G. Laser-oscillator using resonator with self-pumped phase-conjugate mirror. Opt. Lett. 8, 208–210 (1983).

    ADS  Article  Google Scholar 

  5. Gower, M. C. KrF laser-amplifier with phase-conjugate Brillouin retro-reflectors. Opt. Lett. 7, 423–425 (1982).

    ADS  Article  Google Scholar 

  6. Tomov, I. V., Fedosejevs, R., McKen, D. C. D., Domier, C. & Offenberger, A. A. Phase conjugation and pulse-compression of KrF-laser radiation by stimulated Raman-scattering. Opt. Lett. 8, 9–11 (1983).

    ADS  Article  Google Scholar 

  7. Leith, E. et al. Imaging through scattering media with holography. J. Opt. Soc. Am. A 9, 1148–1153 (1992).

    ADS  Article  Google Scholar 

  8. Jones, R. et al. Holographic storage and high background imaging using photorefractive multiple quantum wells. Appl. Phys. Lett. 69, 1837–1839 (1996).

    ADS  Article  Google Scholar 

  9. Cuche, E., Bevilacqua, F. & Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24, 291–293 (1999).

    ADS  Article  Google Scholar 

  10. Fink, M. Time-reversed acoustics. Sci. Am. 281, 91–97 (1999).

    ADS  Article  Google Scholar 

  11. Lerosey, G., De Rosny, J., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    ADS  Article  Google Scholar 

  12. Mittra, R. & Habashy, T. M. Theory of wave-front-distortion correction by phase conjugation. J. Opt. Soc. Am. A 1, 1103–1109 (1984).

    ADS  Article  Google Scholar 

  13. Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    ADS  Article  Google Scholar 

  14. Lukosz, W. Equivalent-lens theory of holographic imaging. J. Opt. Soc. Am. 58, 1084–1091 (1968).

    ADS  Article  Google Scholar 

  15. Zel'dovich, B. Y., Popovich, V. I., Ragul'skii, V. V. & Faizullov, F. S. Connection between wave fronts of reflected and exciting light in stimulated Mandelshtam–Brillouin scattering. JETP Lett. USSR 15, 109–113 (1972).

    ADS  Google Scholar 

  16. Hellwarth, R. W. Theory of phase conjugation by stimulated scattering in a waveguide. J. Opt. Soc. Am. 68, 1050–1056 (1978).

    ADS  Article  Google Scholar 

  17. Ivakin, E. V., Petrovich, I. P., Rubanov, A. S. & Stepanov, B. I. Dynamic holograms in amplifying medium. Kvantovaya Elektronika 2, 1556–1558 (1975).

    Google Scholar 

  18. Gunter, P. Holography, coherent-light amplification and optical-phase conjugation with photorefractive materials. Phys. Rep. Rev. Sec. Phys. Lett. 93, 199–299 (1982).

    Google Scholar 

  19. Yariv, A. Phase conjugate optics and real-time holography. IEEE J. Quantum Electron. 14, 650–660 (1978).

    ADS  Article  Google Scholar 

  20. Hellwarth, R. W. Generation of time-reversed wave fronts by nonlinear refraction. J. Opt. Soc. Am. 67, 1–3 (1977).

    ADS  Article  Google Scholar 

  21. Charra, F. & Nunzi, J. M. Nondegenerate multiwave mixing in polydiacetylene—Phase conjugation with frequency-conversion. J. Opt. Soc. Am. B 8, 570–577 (1991).

    ADS  Article  Google Scholar 

  22. Cheben, P. & Calvo, M. L. A photopolymerizable glass with diffraction efficiency near 100% for holographic storage. Appl. Phys. Lett. 78, 1490–1492 (2001).

    ADS  Article  Google Scholar 

  23. Hoelen, C. G. A., de Mul, F. F. M., Pongers, R. & Dekker, A. Three-dimensional photoacoustic imaging of blood vessels in tissue. Opt. Lett. 23, 648–650 (1998).

    ADS  Article  Google Scholar 

  24. Wang, X. et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nature Biotechnol. 21, 803–806 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation career award BES-0547657 and the Defense Advanced Research Projects Agency Center for Optofluidic Integration.

Author information

Authors and Affiliations

Authors

Contributions

Z.Y. was responsible for project planning, experimental work and data analysis. D.P. provided advice and loaned some equipment for the project. M.S.F. provided advice. C.Y. was responsible for administering the project, project planning, data analysis, and obtaining financial support for the project.

Corresponding author

Correspondence to Changhuei Yang.

Supplementary information

SupplementaryInformation

Optical phase conjugation for turbidity suppression in biological samples (PDF 82 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yaqoob, Z., Psaltis, D., Feld, M. et al. Optical phase conjugation for turbidity suppression in biological samples. Nature Photon 2, 110–115 (2008). https://doi.org/10.1038/nphoton.2007.297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.297

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing