Article | Published:

Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications

Nature Photonics volume 2, pages 105109 (2008) | Download Citation

Abstract

For optimal energy conversion in photovoltaic devices (electricity to and from light) one important requirement is that the full energy of the photons is used. However, in solar cells, a single electron–hole pair of specific energy is generated when the incoming photon energy is above a certain threshold, with the excess energy being lost to heat. In the so-called quantum-cutting process, a high-energy photon can be divided into two, or more, photons of lower energy. Such manipulation of photon quantum size can then very effectively increase the overall efficiency of a device. In the current work, we demonstrate (space-separated) photon cutting by silicon nanocrystals, in which nearby Er3+ ions and neighbouring nanocrystals are used to detect this effect.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Detailed balance limit of efficiency of pn junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

  2. 2.

    , & Hybrid nanorod–polymer solar cells. Science 295, 2425–2427 (2002).

  3. 3.

    , & Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158–162 (2003).

  4. 4.

    & A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

  5. 5.

    , , , & Photovoltaic technology: The case for thin-film solar cells. Science 285, 692–698 (1999).

  6. 6.

    , , & Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663–666 (1999).

  7. 7.

    , & Solar cells based on quantum dots: Multiple exciton generation in films of electronically coupled PbSe quantum dots. MRS Bull. 32, 236–241 (2007).

  8. 8.

    Quantum dot solar cells. Physica E 14, 115–120 (2002).

  9. 9.

    & High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).

  10. 10.

    et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005).

  11. 11.

    , & Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals. Appl. Phys. Lett. 87, 253102 (2005).

  12. 12.

    et al. PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128, 3241–3247 (2006).

  13. 13.

    , , & Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett. 6, 424–429 (2006).

  14. 14.

    et al. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7, 2506–2512 (2007).

  15. 15.

    , , , & Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

  16. 16.

    et al. Direct observation of electron-to-hole energy transfer in CdSe quantum dots. Phys. Rev. Lett. 96, 057408 (2006).

  17. 17.

    , , , & 1.54 µm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+. Appl. Phys. Lett. 71, 1198–1200 (1997).

  18. 18.

    , , , & Nanosecond dynamics of the near-infrared photoluminescence of Er-doped SiO2 sensitized with Si nanocrystals. Phys. Rev. Lett. 97, 207401 (2006).

  19. 19.

    Erbium as a probe of everything? Physica B 300, 78–90 (2001).

  20. 20.

    , & Multiexciton generation by a single photon in nanocrystals. Nano Lett. 6, 2856–2863 (2006).

  21. 21.

    , & High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nature Phys. 1, 189–194 (2005).

  22. 22.

    & Carrier multiplication in semiconductor nanocrystals via intraband optical transitions involving virtual biexciton states. Phys. Rev. B 76, 125321 (2007).

  23. 23.

    , & Direct carrier multiplication due to inverse Auger scattering in CdSe quantum dots. Appl. Phys. Lett. 84, 2409–2411 (2004).

  24. 24.

    et al. Saturation and voltage quenching of porous-silicon luminescence and the importance of the Auger effect. Phys. Rev. B 51, 17605–17613 (1995).

  25. 25.

    , , & Picosecond photoluminescence and transient absorption in silicon nanocrystals. Phys. Rev. B 72, 075365 (2005).

  26. 26.

    & Role of impact ionization in multiple exciton generation in PbSe nanocrystals. Phys. Rev. B 73, 205423 (2006).

  27. 27.

    , & Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 54, 8633–8643 (1996).

  28. 28.

    , & Energy levels in embedded semiconductor nanoparticles and nanowires. Nano Lett. 1, 605–611 (2001).

  29. 29.

    , & Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

  30. 30.

    & Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

  31. 31.

    , and Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92, 1668–1674 (2002).

Download references

Acknowledgements

The authors acknowledge the contribution of M. Fujii, Kobe University, for sample preparation and characterization, and R. Sprik, W.J. Buma and M. de Groot, University of Amsterdam, for absorption and dye laser PL measurements. P.S. acknowledges the financial support of Stichting voor Fundamenteel Onderzoek Materie (FOM) during his sabbatical at the Van der Waals–Zeeman Institute.

Author information

Affiliations

  1. Van der Waals–Zeeman Institute, University of Amsterdam, Valckenierstraat 65, NL-1018 XE Amsterdam, The Netherlands

    • D. Timmerman
    • , I. Izeddin
    • , P. Stallinga
    •  & T. Gregorkiewicz
  2. Center for Electronics, Opto-electronics and Telecommunications, University of The Algarve, Faro, Portugal

    • P. Stallinga
  3. A. F. Ioffe Physico-Technical Institute, RAS, St Petersburg, Russia

    • I. N. Yassievich

Authors

  1. Search for D. Timmerman in:

  2. Search for I. Izeddin in:

  3. Search for P. Stallinga in:

  4. Search for I. N. Yassievich in:

  5. Search for T. Gregorkiewicz in:

Corresponding author

Correspondence to D. Timmerman.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary information, equations and figures S1-S3

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2007.279

Further reading