Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-reciprocal ultrafast laser writing

Abstract

Photosensitivity is a material property that is relevant to many phenomena and applications, from photosynthesis and photography to optical data storage and ultrafast laser writing. It was commonly thought that, in a homogeneous medium, photosensitivity and the corresponding light-induced material modifications do not change on reversing the direction of light propagation. Here we demonstrate that when the direction of the femtosecond laser beam is reversed from the +z to –z direction, the structures written in LiNbO3 crystal when translating the beam along the +y and –y directions are mirrored. In a non-centrosymmetric medium, modification of the material can therefore differ for light propagating in opposite directions. This is the first evidence of a new optical phenomenon of non-reciprocal photosensitivity. We interpret this effect in terms of light pressure and associated heat flow, resulting in a temperature gradient in homogeneous media without inversion symmetry under uniform intense irradiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Line structures written along the y axis of the LiNbO3 sample.
Figure 2: Comparison of the line structures imprinted along the y and x axes.
Figure 3: Phase images of line structures in the rotation experiment.
Figure 4: Phase images of line structures in the flip experiment.
Figure 5: Illustration of the differential heating of a crystal as a result of the bulk photothermal effect.

Similar content being viewed by others

References

  1. Stuart, B. C., Feit, M. D., Rubenchik, A. M., Shore, B. W. & Perry, M. D. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248–2251 (1995).

    Article  ADS  Google Scholar 

  2. Tien, A. C., Backus, S., Kapteyn, H., Murnane, M. & Mourou, G. Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett. 82, 3883–3886 (1999).

    Article  ADS  Google Scholar 

  3. Birngruber, R. et al. Femtosecond laser tissue interactions—retinal injury studies. IEEE J. Quant. Electron. 23, 1836–1844 (1987).

    Article  ADS  Google Scholar 

  4. Tirlapur, U. K. & Konig, K. Cell biology-targeted transfection by femtosecond laser. Nature 418, 290–291 (2002).

    Article  ADS  Google Scholar 

  5. Davis, K. M., Miura, K., Sugimoto, N. & Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996).

    Article  ADS  Google Scholar 

  6. Streltsov, A. M. & Borrelli, N. F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses. Opt. Lett. 26, 42–43 (2001).

    Article  ADS  Google Scholar 

  7. Osellame, R. et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B 20, 1559–1567 (2003).

    Article  ADS  Google Scholar 

  8. Watanabe, W., Asano, T., Yamada, K., Itoh, K. & Nishii, J. Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt. Lett. 28, 2491–2493 (2003).

    Article  ADS  Google Scholar 

  9. Chan, J. W., Huser, T. R., Risbud, S. H. & Krol, D. M. Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses. Appl. Phys. A 76, 367–372 (2003).

    Article  ADS  Google Scholar 

  10. Eaton, S. M., Zhang, H. B. & Herman, P. R. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708–4716 (2005).

    Article  ADS  Google Scholar 

  11. Okhrimchuk, A. G., Shestakov, A. V., Khrushchev, I. & Mitchell, J. Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing. Opt. Lett. 30, 2248–2250 (2005).

    Article  ADS  Google Scholar 

  12. Graf, R. et al. Pearl-chain waveguides written at megahertz repetition rate. Appl. Phys. B 87, 21–27 (2007).

    Article  ADS  Google Scholar 

  13. Glezer, E. N. et al. Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023–2025 (1996).

    Article  ADS  Google Scholar 

  14. Kawamura, K., Hirano, M., Kamiya, T. & Hosono, H. Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse. Appl. Phys. Lett. 81, 1137–1139 (2002).

    Article  ADS  Google Scholar 

  15. Ashkenasi, D. et al. Fundamentals and advantages of ultrafast micro-structuring of transparent materials. Appl. Phys. A 77, 223–228 (2003).

    ADS  Google Scholar 

  16. Glezer, E. N. & Mazur, E. Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett. 71, 882–884 (1997).

    Article  ADS  Google Scholar 

  17. Seet, K. K., Mizeikis, V., Matsuo, S., Juodkazis, S. & Misawa, H. Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing. Adv. Mater. 17, 541–545 (2005).

    Article  Google Scholar 

  18. Poumellec, B., Sudrie, L., Franco, M., Prade, B. & Mysyrowicz, A. Femtosecond laser irradiation stress induced in pure silica. Opt. Express 11, 1070–1079 (2003).

    Article  ADS  Google Scholar 

  19. Sudrie, L. et al. Femtosecond laser-induced damage and filamentary propagation in fused silica. Phys. Rev. Lett. 89, 186601 (2002).

    Article  ADS  Google Scholar 

  20. Marshall, G. D., Ams, M. & Withford, M. J. Direct laser written waveguide-Bragg gratings in bulk fused silica. Opt. Lett. 31, 2690–2691 (2006).

    Article  ADS  Google Scholar 

  21. Kazansky, P. G. et al. Anomalous anisotropic light scattering in Ge-doped silica glass. Phys. Rev. Lett. 82, 2199–2202 (1999).

    Article  ADS  Google Scholar 

  22. Shimotsuma, Y., Kazansky, P. G., Qiu, J. R. & Hirao, K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247705 (2003).

    Article  ADS  Google Scholar 

  23. Hnatovsky, C. et al. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. Opt. Lett. 30, 1867–1869 (2005).

    Article  ADS  Google Scholar 

  24. Yang, W. J., Bricchi, E., Kazansky, P. G., Bovatsek, J. & Arai, A. Y. Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing. Opt. Express 14, 10117–10124 (2006).

    Article  ADS  Google Scholar 

  25. Qiu, J. R. et al. Manipulation of gold nanoparticles inside transparent materials. Angew. Chem. Int. Edn 43, 2230–2234 (2004).

    Article  Google Scholar 

  26. Dubov, M., Mezentsev, V., Bennion, I. & Nikogosyan, D. N. UV femtosecond laser inscribes a 300 nm period nanostructure in a pure fused silica. Meas. Sci. Technol. 18, 15–17 (2007).

    Article  ADS  Google Scholar 

  27. Podlipensky, A., Abdolvand, A., Seifert, G. & Graener, H. Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles. Appl. Phys. A 80, 1647–1652 (2005).

    Article  ADS  Google Scholar 

  28. Gui, L., Xu, B. X. & Chong, T. C. Microstructure in lithium niobate by use of focused femtosecond laser pulses. IEEE Photon. Technol. Lett. 16, 1337–1339 (2004).

    Article  ADS  Google Scholar 

  29. Thomson, R. R., Campbell, S., Blewett, I. J., Kar, A. K. & Reid, D. T. Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime. Appl. Phys. Lett. 88, 111109 (2006).

    Article  ADS  Google Scholar 

  30. Burghoff, J., Hartung, H., Nolte, S. & Tunnermann, A. Structural properties of femtosecond laser-induced modifications in LiNbO3 . Appl. Phys. A 86, 165–170 (2007).

    Article  ADS  Google Scholar 

  31. Burghoff, J., Grebing, C., Nolte, S. & Tunnermann, A. Waveguides in lithium niobate fabricated by focused ultrashort laser pulses. Appl. Surf. Sci. 253, 7899–7902 (2007).

    Article  ADS  Google Scholar 

  32. Zhou, G. Y. & Gu, M. Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal. Appl. Phys. Lett. 87, 241107 (2005).

    Article  ADS  Google Scholar 

  33. Prokhorov, A. M. & Kuzminov, Y. S. Physics and Chemistry of Crystalline Lithium Niobate (Hilger, New York, 1990).

    Google Scholar 

  34. Weis, R. S. & Gaylord, T. K. Lithium niobate—summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203 (1985).

    Article  ADS  Google Scholar 

  35. Glass, A. M., Linde, D. V. D. & Negran, T. J. High-voltage bulk photovoltaic effect and photorefractive process in LiNbO3 . Appl. Phys. Lett. 25, 233–235 (1974).

    Article  ADS  Google Scholar 

  36. Gallo, K., Assanto, G., Parameswaran, K. R. & Fejer, M. M. All-optical diode in a periodically poled lithium niobate waveguide. Appl. Phys. Lett. 79, 314–316 (2001).

    Article  ADS  Google Scholar 

  37. Shur, V. Y. et al. Nanoscale backswitched domain patterning in lithium niobate. Appl. Phys. Lett. 76, 143–145 (2000).

    Article  ADS  Google Scholar 

  38. Kazansky, P. G. et al. ‘Quill’ writing with ultrashort light pulses in transparent materials. Appl. Phys. Lett. 90, 151120 (2007).

    Article  ADS  Google Scholar 

  39. Chrisey, D. B. Materials processing—the power of direct writing. Science 289, 879–881 (2000).

    Article  Google Scholar 

  40. Livingston, F. E. & Helvajian, H. The symbiosis of light and matter: Laser-engineered materials for photo-functionality. MRS Bull. 32, 40–46 (2007).

    Article  Google Scholar 

  41. Garcés-Chávez, V., McGloin, D., Melville, H., Sibbett, W. & Dholakia, K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002).

    Article  ADS  Google Scholar 

  42. Juodkazis, S. et al. Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3 . Appl. Phys. Lett. 89, 062903 (2006).

    Article  ADS  Google Scholar 

  43. Barty, A., Nugent, K. A., Paganin, D. & Roberts, A. Quantitative optical phase microscopy. Opt. Lett. 23, 817–819 (1998).

    Article  ADS  Google Scholar 

  44. Sturman, B. & Fridkin, V. M. The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, New York, 1992).

    Google Scholar 

  45. Ivchenko, E. L. & Pikus, G. E. Superlattices and Other Heterostructures: Symmetry and Optical Phenomena (Springer, Berlin, 1995).

    Book  Google Scholar 

  46. Nejadmalayeri, A. H. & Herman, P. R. Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate. Opt. Express 15, 10842–10854 (2007).

    Article  ADS  Google Scholar 

  47. Rikken, G. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to K. Gallo and V.Y. Shur for helpful discussions and C. Corbari for help with the experiments. The work was supported by the Engineering and Physical Sciences Research Council (EPSRC). Y.P.S. would like to acknowledge the support of Academy of Finland (grant no. 115781) and the National Technology Agency of Finland (TEKES) (grant no. 40310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Kazansky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Kazansky, P. & Svirko, Y. Non-reciprocal ultrafast laser writing. Nature Photon 2, 99–104 (2008). https://doi.org/10.1038/nphoton.2007.276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing