Article | Published:

Non-reciprocal ultrafast laser writing

Nature Photonics volume 2, pages 99104 (2008) | Download Citation

Subjects

Abstract

Photosensitivity is a material property that is relevant to many phenomena and applications, from photosynthesis and photography to optical data storage and ultrafast laser writing. It was commonly thought that, in a homogeneous medium, photosensitivity and the corresponding light-induced material modifications do not change on reversing the direction of light propagation. Here we demonstrate that when the direction of the femtosecond laser beam is reversed from the +z to –z direction, the structures written in LiNbO3 crystal when translating the beam along the +y and –y directions are mirrored. In a non-centrosymmetric medium, modification of the material can therefore differ for light propagating in opposite directions. This is the first evidence of a new optical phenomenon of non-reciprocal photosensitivity. We interpret this effect in terms of light pressure and associated heat flow, resulting in a temperature gradient in homogeneous media without inversion symmetry under uniform intense irradiation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248–2251 (1995).

  2. 2.

    , , , & Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett. 82, 3883–3886 (1999).

  3. 3.

    et al. Femtosecond laser tissue interactions—retinal injury studies. IEEE J. Quant. Electron. 23, 1836–1844 (1987).

  4. 4.

    & Cell biology-targeted transfection by femtosecond laser. Nature 418, 290–291 (2002).

  5. 5.

    , , & Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996).

  6. 6.

    & Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses. Opt. Lett. 26, 42–43 (2001).

  7. 7.

    et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B 20, 1559–1567 (2003).

  8. 8.

    , , , & Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt. Lett. 28, 2491–2493 (2003).

  9. 9.

    , , & Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses. Appl. Phys. A 76, 367–372 (2003).

  10. 10.

    , & Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708–4716 (2005).

  11. 11.

    , , & Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing. Opt. Lett. 30, 2248–2250 (2005).

  12. 12.

    et al. Pearl-chain waveguides written at megahertz repetition rate. Appl. Phys. B 87, 21–27 (2007).

  13. 13.

    et al. Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023–2025 (1996).

  14. 14.

    , , & Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse. Appl. Phys. Lett. 81, 1137–1139 (2002).

  15. 15.

    et al. Fundamentals and advantages of ultrafast micro-structuring of transparent materials. Appl. Phys. A 77, 223–228 (2003).

  16. 16.

    & Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett. 71, 882–884 (1997).

  17. 17.

    , , , & Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing. Adv. Mater. 17, 541–545 (2005).

  18. 18.

    , , , & Femtosecond laser irradiation stress induced in pure silica. Opt. Express 11, 1070–1079 (2003).

  19. 19.

    et al. Femtosecond laser-induced damage and filamentary propagation in fused silica. Phys. Rev. Lett. 89, 186601 (2002).

  20. 20.

    , & Direct laser written waveguide-Bragg gratings in bulk fused silica. Opt. Lett. 31, 2690–2691 (2006).

  21. 21.

    et al. Anomalous anisotropic light scattering in Ge-doped silica glass. Phys. Rev. Lett. 82, 2199–2202 (1999).

  22. 22.

    , , & Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247705 (2003).

  23. 23.

    et al. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. Opt. Lett. 30, 1867–1869 (2005).

  24. 24.

    , , , & Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing. Opt. Express 14, 10117–10124 (2006).

  25. 25.

    et al. Manipulation of gold nanoparticles inside transparent materials. Angew. Chem. Int. Edn 43, 2230–2234 (2004).

  26. 26.

    , , & UV femtosecond laser inscribes a 300 nm period nanostructure in a pure fused silica. Meas. Sci. Technol. 18, 15–17 (2007).

  27. 27.

    , , & Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles. Appl. Phys. A 80, 1647–1652 (2005).

  28. 28.

    , & Microstructure in lithium niobate by use of focused femtosecond laser pulses. IEEE Photon. Technol. Lett. 16, 1337–1339 (2004).

  29. 29.

    , , , & Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime. Appl. Phys. Lett. 88, 111109 (2006).

  30. 30.

    , , & Structural properties of femtosecond laser-induced modifications in LiNbO3. Appl. Phys. A 86, 165–170 (2007).

  31. 31.

    , , & Waveguides in lithium niobate fabricated by focused ultrashort laser pulses. Appl. Surf. Sci. 253, 7899–7902 (2007).

  32. 32.

    & Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal. Appl. Phys. Lett. 87, 241107 (2005).

  33. 33.

    & Physics and Chemistry of Crystalline Lithium Niobate (Hilger, New York, 1990).

  34. 34.

    & Lithium niobate—summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203 (1985).

  35. 35.

    , & High-voltage bulk photovoltaic effect and photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233–235 (1974).

  36. 36.

    , , & All-optical diode in a periodically poled lithium niobate waveguide. Appl. Phys. Lett. 79, 314–316 (2001).

  37. 37.

    et al. Nanoscale backswitched domain patterning in lithium niobate. Appl. Phys. Lett. 76, 143–145 (2000).

  38. 38.

    et al. ‘Quill’ writing with ultrashort light pulses in transparent materials. Appl. Phys. Lett. 90, 151120 (2007).

  39. 39.

    Materials processing—the power of direct writing. Science 289, 879–881 (2000).

  40. 40.

    & The symbiosis of light and matter: Laser-engineered materials for photo-functionality. MRS Bull. 32, 40–46 (2007).

  41. 41.

    , , , & Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002).

  42. 42.

    et al. Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3. Appl. Phys. Lett. 89, 062903 (2006).

  43. 43.

    , , & Quantitative optical phase microscopy. Opt. Lett. 23, 817–819 (1998).

  44. 44.

    & The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, New York, 1992).

  45. 45.

    & Superlattices and Other Heterostructures: Symmetry and Optical Phenomena (Springer, Berlin, 1995).

  46. 46.

    & Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate. Opt. Express 15, 10842–10854 (2007).

  47. 47.

    & Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

Download references

Acknowledgements

The authors are grateful to K. Gallo and V.Y. Shur for helpful discussions and C. Corbari for help with the experiments. The work was supported by the Engineering and Physical Sciences Research Council (EPSRC). Y.P.S. would like to acknowledge the support of Academy of Finland (grant no. 115781) and the National Technology Agency of Finland (TEKES) (grant no. 40310).

Author information

Affiliations

  1. Optoelectronics Research Centre, University of Southampton SO17 1BJ, UK

    • Weijia Yang
    •  & Peter G. Kazansky
  2. Department of Physics and Mathematics, University of Joensuu, FI-80101, Finland

    • Yuri P. Svirko

Authors

  1. Search for Weijia Yang in:

  2. Search for Peter G. Kazansky in:

  3. Search for Yuri P. Svirko in:

Corresponding author

Correspondence to Peter G. Kazansky.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2007.276

Further reading