Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients

A Corrigendum to this article was published on 01 July 2007

Abstract

Electro–optic (EO) modulators are typically made from inorganic materials such as LiNbO3, but replacing them with organic EO materials, that is, ones with optical properties that change in response to an electric field, could be a promising alternative because they offer large bandwidth, ease of processing and relatively low cost. Here we incorporate a doped, crosslinked organic EO polymer into hybrid polymer/sol–gel waveguide modulator devices with exceptional performance. The half-wave voltages of the resulting Mach–Zehnder (MZ) and phase modulators at 1550 nm are 1 V and 2.5 V, respectively. The unique properties of the sol–gel cladding materials used in the hybrid structure result in a 100% device poling efficiency, leading to respective in-device EO coefficients of 138 pm V–1 and 170 pm V–1 in the MZ and phase modulators. These results are the first to show in-device EO coefficients that are five to six times larger than those of the benchmark inorganic material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crosslinked guest–host polymers with EO chromophores.
Figure 2: Stability of the EO coefficient.
Figure 3: The device structure in the active region.
Figure 5: Measurement of r33 values, indicating their stability.
Figure 4: Low-frequency modulator transfer-function measurement at 1,550 nm.

Similar content being viewed by others

References

  1. Alferness, R. C. Waveguide electro-optic modulators. IEEE Trans. Microwave Theory Tech. 30, 1121–1137 (1982).

    Article  ADS  Google Scholar 

  2. Chen, D. et al. Demonstration of 110 GHz electro-optic polymer modulation. Appl. Phys. Lett. 70, 3335–3337 (1997).

    Article  ADS  Google Scholar 

  3. Kim, T.-D. et al. Ultra-large and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems. Adv. Mater. 18, 3038–3042 (2006).

    Article  Google Scholar 

  4. Enami, Y. et al. Low half-wave voltage and high electro-optic effect in hybrid polymer/sol-gel waveguide modulators. Appl. Phys. Lett. 89, 143506 (2006).

    Article  ADS  Google Scholar 

  5. Shi, Y. et al. Electro-optic polymer modulators with 0.8 V half-wave voltage. Appl. Phys. Lett. 77, 1–3 (2000).

    Article  ADS  Google Scholar 

  6. Shi, Y. et al. Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape. Science 288, 119–122 (2000).

    Article  ADS  Google Scholar 

  7. Zhang, C., Dalton, L. R., Oh, M.-C., Zhang, H. & Steier, W. H. Low Vπ electro-optic modulators from CLD-1: Chromophore design and synthesis, material processing, and characterization. Chem. Mater. 13, 3043–3050 (2001).

    Article  Google Scholar 

  8. Oh, M.-C. et al. Electro-optic polymer modulators for 1.55 µm wavelength using phenyltetraene bridged chromophore in polycarbonate. Appl. Phys. Lett. 76, 3525–3527 (2000).

    Article  ADS  Google Scholar 

  9. Zhang, H. et al. Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at both 1310 and 1550 nm. Appl. Phys. Lett. 78, 3136–3138 (2001).

    Article  ADS  Google Scholar 

  10. Park, S., Ju, J. J., Park, S. K., Lee, M.-H. & Do, J. Y. Thermal relaxation trimming for enhancement of extinction ratio in electro-optic polymer Mach–Zehnder modulators. Appl. Phys. Lett. 86, 071102 (2005).

    Article  ADS  Google Scholar 

  11. Kuo, Y.-H., Luo, J., Steier, W. H. & Jen, A. K.-Y. Enhanced thermal stability of electro-optic polymer modulators using the Diels-Alder crosslinkable polymer. IEEE Photon. Technol. Lett. 18, 175–177 (2006).

    Article  ADS  Google Scholar 

  12. Enami, Y. et al. Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators. Appl. Phys. Lett. 76, 1086–1088 (2000).

    Article  ADS  Google Scholar 

  13. Enami, Y., Meredith, G., Peyghambarian, N., Kawazu, M. & Jen, A. K.-Y. Hybrid electro-optic polymer and selectively buried sol-gel waveguides. Appl. Phys. Lett. 82, 490–492 (2003).

    Article  ADS  Google Scholar 

  14. Enami, Y., Kawazu, M., Jen, A. K.-Y., Meredith, G. & Peyghambarian, N. Polarization-insensitive transition between sol-gel waveguide and electro-optic polymer and intensity modulation for all-optical networks. J. Lightwave Technol. 21, 2053–2060 (2003).

    Article  ADS  Google Scholar 

  15. Enami, Y., Meredith, G., Peyghambarian, N. & Jen, A. K.-Y. Hybrid electro-optic polymer/sol-gel waveguide modulator fabricated by all-wet etching process. Appl. Phys. Lett. 83, 4692–4694 (2003).

    Article  ADS  Google Scholar 

  16. Enami, Y., Jen, A. K.-Y., Meredith, M. & Peyghambarian, N. Hybrid electro-optic polymer/sol-gel waveguide modulators fabricated by all-wet etching process, using straight channel and Mach-Zehnder waveguides. Proc. SPIE 5351, 28–35 (2004).

    Article  ADS  Google Scholar 

  17. DeRose, C. et al. Pockels coefficient enhancement of poled electro-optic polymers with a hybrid organic-inorganic sol-gel cladding layer. Appl. Phys. Lett. 89, 131102 (2006).

    Article  ADS  Google Scholar 

  18. Oh, M.-C., Zhang, C., Lee, H.-J., Steier, W. H. & Fetterman, H. R. Low-loss interconnection between electro-optic and passive polymer waveguides with a vertical taper. IEEE Photon. Tech. Lett. 14, 1121–1123 (2002).

    Article  ADS  Google Scholar 

  19. Ahn, S.-W. et al. Integration of electro-optic polymer modulators with low-loss fluorinated polymer waveguides. Opt. Lett. 27, 2109–2111 (2002).

    Article  ADS  Google Scholar 

  20. Chang, D. et al. Vertical adiabatic transition between a silica planar waveguide and an electro-optic polymer fabricated with gray-scale lithography. Opt. Lett. 28, 869–871 (2003).

    Article  ADS  Google Scholar 

  21. Oh, M.-C. et al. Recent advances in electro-optic polymer modulators incorporating highly nonlinear chromophore. IEEE J. Sel. Top. Quant. Electron. 7, 826–835 (2001).

    Article  ADS  Google Scholar 

  22. Paloczi, G. T., Huang, Y., Yariv, A., Luo, J. & Jen, A. K.-Y. Replica-molded electro-optic polymer Mach-Zehnder modulator. Appl. Phys. Lett. 85, 1662–1664 (2004).

    Article  ADS  Google Scholar 

  23. Park, S., Ju, J. J., Do, J. D., Park, S. K. & Lee, M.-H. Thermal stability enhancement of electrooptic polymer modulator. IEEE Photon. Tech. Lett. 16, 93–95 (2004).

    Article  ADS  Google Scholar 

  24. Kim, S.-K. et al. Side-chain electro-optic polymer modulator with wide thermal stability ranging from –46 °C to 95 °C for fiber-optic gyroscope applications. Appl. Phys. Lett. 87, 061112 (2005).

    Article  ADS  Google Scholar 

  25. Kim, S.-K. et al. Electro-optic phase modulator using metal-defined polymer optical waveguide. Appl. Phys. Lett. 87, 011107 (2005).

    Article  ADS  Google Scholar 

  26. Taylor, E. W. et al. Radiation resistance of electro-optic polymer-based modulators. Appl. Phys. Lett. 86, 201122 (2005).

    Article  ADS  Google Scholar 

  27. Michalak, R. J. et al. High-speed AJL8/APC polymer modulator. IEEE Photon. Tech. Lett. 18, 1207–1209 (2006).

    Article  ADS  Google Scholar 

  28. Dalton, L. et al. Acentric lattice electro-optic materials by rational design. Proc. SPIE 5912, 1–12 (2005)

    ADS  Google Scholar 

  29. Kang, J.-W., Kim, T.-D., Luo, J., Haller, M. & Jen, A. K.-Y. Very large electro-optic coefficients from in situ generated side-chain nonlinear optical polymers. Appl. Phys. Lett. 87, 071109 (2006).

    Article  ADS  Google Scholar 

  30. Luo, J. et al. Recent progress in developing highly efficient and thermally stable nonlinear optical polymers for electro-optics. Proc. SPIE 5351, 36–43 (2004).

    Article  ADS  Google Scholar 

  31. Teng, C. C. & Man, H. T. Simple reflection technique for measuring the electro-optic coefficient of poled polymers. Appl. Phys. Lett. 56, 1734–1736 (1990).

    Article  ADS  Google Scholar 

  32. Park, D. H., Lee, C. H. & Herman, W. N. Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures. Opt. Express 14, 8866–8884 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the National Science Foundation MDITR Science and Technology Center through the University of Washington and the Defense Advanced Research Projects Agency (DARPA) MORPH program. Y.E. thanks the International Communication Foundation, Japan, for travel support. A.K.-Y.J. thanks the Boeing–Johnson Foundation for its support. The authors would also like to thank Lumera Corporation for providing some of the materials in collaboration with the University of Washington, and Warren Herman for his critical reading of the manuscript and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Peyghambarian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enami, Y., Derose, C., Mathine, D. et al. Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients. Nature Photon 1, 180–185 (2007). https://doi.org/10.1038/nphoton.2007.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing