Amplified wavelength–time transformation for real-time spectroscopy

Article metrics

Abstract

Real-time spectroscopy provides invaluable information about the evolution of dynamical processes, especially non-repetitive phenomena. Unfortunately, the continuous acquisition of rapidly varying spectra represents an extremely difficult challenge. One method, wavelength–time mapping, chirps the spectrum so that it can be measured using a single-shot oscilloscope1,2,3,4. Here, we demonstrate a method that overcomes a fundamental problem that has previously plagued wavelength–time spectroscopy: fine spectral resolution requires large dispersion, which is accompanied by extreme optical loss. The present technique uses an optically amplified wavelength–time transformation to beat the dispersion-loss trade-off and facilitate high-resolution, broadband, real-time applications. We show that this distributed amplification process can even be pumped by broadband noise, generating a wide gain bandwidth using a single pump source. We apply these techniques to demonstrate real-time stimulated Raman spectroscopy. Amplified wavelength–time Raman spectroscopy creates new opportunities for the study of chemical and physical dynamics in real time.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of the CWEETS set-up used to measure the SRS spectrum in a silicon waveguide.
Figure 2: Single-shot SRS spectra of silicon measured with CWEETS.
Figure 3: Sequence of silicon Raman movie frames acquired in a continuous measurement using an unstable supercontinuum probe.
Figure 4: Demonstration of the amplified wavelength–time transformation in spectroscopy.

References

  1. 1

    Kelkar, P. V., Coppinger, F., Bhushan, A. S. & Jalali, B. Time-domain optical sensing. Electron. Lett. 35, 1661–1662 (1999).

  2. 2

    Sanders, S. T. Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband spectroscopy. Appl. Phys. B 75, 799–802 (2002).

  3. 3

    Chou, J., Han, Y. & Jalali, B. Time–wavelength spectroscopy for chemical sensing. IEEE Photon. Technol. Lett. 16, 1140–1142 (2004).

  4. 4

    Hult, J., Watt, R. S. & Kaminski, C. F. Dispersion measurement in optical fibers using supercontinuum pulses. J. Lightwave Technol. 25, 820–824 (2007).

  5. 5

    Tong, Y. C., Chan, L. Y. & Tsang, H. K. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope. Electron. Lett. 33, 983–985 (1997).

  6. 6

    Han, Y., Boyraz, O. & Jalali, B. Tera-sample per second real-time waveform digitizer. Appl. Phys. Lett. 87, 241116 (2005).

  7. 7

    Watt, R. S. & Hult, J. in Proc. Europ. Combustion Meeting 1–4 (Chania, Greece, 2007).

  8. 8

    Jackson, J. D. Classical Electrodynamics 3rd edn (Wiley, New York, 1999).

  9. 9

    (ed. Laserna, J. J.) Modern Techniques in Raman Spectroscopy (Wiley, New York, 1996).

  10. 10

    Eckhardt, G. et al. Stimulated Raman scattering from organic liquids. Phys. Rev. Lett. 9, 455–457 (1962).

  11. 11

    Agrawal, G. P. Nonlinear Fiber Optics 3rd edn (Academic Press, San Diego, 2001).

  12. 12

    Lallemand, P., Simova, P. & Bret, G. Pressure-induced line shift and collisional narrowing in hydrogen gas determined by stimulated Raman emission. Phys. Rev. Lett. 17, 1239–1241 (1966).

  13. 13

    Owyoung, A. Coherent Raman gain spectroscopy using CW laser sources. IEEE J. Quant. Electron. QE-14, 192–203 (1978).

  14. 14

    Wang, C.-S. Theory of stimulated Raman scattering. Phys. Rev. 182, 482–494 (1969).

  15. 15

    Kukura, P., McCamant, D. W., Yoon, S., Wandschneider, D. B. & Mathies, R. A. Structural observation of the primary isomerization of vision with femtosecond-stimulated Raman. Science 310, 1006–1009 (2005).

  16. 16

    McCamant, D. W., Kukura, P. & Mathies, R. A. Femtosecond time-resolved stimulated Raman spectroscopy: Application to the ultrafast internal conversion in β-carotene. J. Phys. Chem. A 107, 8208–8214 (2003).

  17. 17

    Yoshizawa, M., Hattori, Y. & Kobayashi, T. Femtosecond time-resolved resonance Raman gain spectroscopy in polydiacetylene. Phys. Rev. B 49, 13259–13262 (1994).

  18. 18

    Parker, J. H., Feldman, D. W. & Ashkin, M. Raman scattering by silicon and germanium. Phys. Rev. 155, 712–714 (1967).

  19. 19

    Temple, P. A. & Hathaway, C. E. Multiphonon Raman spectrum of silicon. Phys. Rev. B 7, 3685–3697 (1973).

  20. 20

    Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

  21. 21

    Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

  22. 22

    Claps, R., Dimitropoulos, D., Raghunathan, V., Han, Y. & Jalali, B. Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 11, 1731–1739 (2003).

  23. 23

    Xu, Q., Almeida, V. R. & Lipson, M. Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides. Opt. Express 12, 4437–4442 (2004).

  24. 24

    Jones, R. et al. Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 13, 519–525 (2005).

  25. 25

    Solli, D. R. & Jalali, B. in CLEO/QELS 2007 Technical Digest, CMB3, 1–2 (OSA, Washington DC, 2007).

  26. 26

    Stolen, R. H. & Ippen, E. P. Raman gain in glass optical waveguides. Appl. Phys. Lett. 22, 276–278 (1973).

  27. 27

    Islam, M. N. Raman amplifiers for telecommunications. IEEE J. Sel. Top. Quant. Electron. 8, 548–559 (2002).

  28. 28

    Vakhshoori, D. et al. in OSA Trends in Optics and Photonics Vol. 86, OFC Conference, Technical Digest, PD47, 1–3 (OSA, Washington DC, 2003).

  29. 29

    Keita, K., Delaye, P., Frey, R. & Roosen, G. Relative intensity noise transfer of large-bandwidth pump lasers in Raman fiber amplifiers. J. Opt. Soc. Am. B 23, 2479–2485 (2006).

Download references

Acknowledgements

We thank P. Koonath for helpful discussions.

Author information

Correspondence to D. R. Solli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Solli, D., Chou, J. & Jalali, B. Amplified wavelength–time transformation for real-time spectroscopy. Nature Photon 2, 48–51 (2008) doi:10.1038/nphoton.2007.253

Download citation

Further reading