Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission

Abstract

Firefly bioluminescence1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 is the most well-known ideal photo-emitter system in biophotonics, known in particular for its extremely high quantum yield, 88 ± 25% (refs 2,3) or higher4,5,6, and its magnificent pH-dependent emission-colour change3,7 between yellow-green and red, modelled as the chemical equilibrium between two corresponding states8,9,10,11,12,13,14. However, the need for re-examination has also been discussed4,5,6. In this letter we quantify quantum yields and colour changes using our new total-photon-flux spectrometer20,21. We determine the highest quantum yield to be 41.0 ± 7.4% (1 standard deviation (s.d.) estimate, coverage factor k = 1), and find that bioluminescence spectra are systematically decomposed into one pH-sensitive and two pH-insensitive gaussian components. There is no intensity conversion between yellow-green and red emissions through pH equilibrium, but simple intensity variation of the pH-sensitive gaussian peak at 2.2 eV causes the changes in emission colours. This represents a paradigm shift in the concept of colour determination from long-standing interpretation based on pH equilibrium.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Quantitative measurements of firefly bioluminescence.
Figure 2: Luminescence decay of firefly bioluminescence.
Figure 3: Gaussian fits of firefly bioluminescence.

References

  1. Shimomura, O. in Bioluminescence: Chemical Principles and Methods 1–29 (World Scientific, New Jersey, 2006).

    Chapter  Google Scholar 

  2. Seliger, H. H. & McElroy, W. D. Quantum yield in the oxidation of firefly luciferin. Biochem. Biophys. Res. Commun. 1, 21–24 (1959).

    Article  Google Scholar 

  3. Seliger, H. H. & McElroy, W. D. Spectral emission and quantum yield of firefly bioluminescence. Arch. Biochem. Biophys. 88, 136–141 (1960).

    Article  Google Scholar 

  4. Seliger, H. H., McElroy, W. D., White, E. H. & Field, G. F. Stereospecificity and firefly bioluminescence, a comparison of natural and synthetic luciferins. Proc. Natl Acad. Sci. USA 47, 1129–1134 (1961).

    Article  ADS  Google Scholar 

  5. White, E. H., McCapra, F., Field, G. & McElroy, W. D. The structure and synthesis of firefly luciferin. J. Am. Chem. Soc. 83, 2402–2403 (1961).

    Article  Google Scholar 

  6. White, E. H., McCapra, F. & Field, G. F. The structure and synthesis of firefly luciferin. J. Am. Chem. Soc. 85, 337–343 (1963).

    Article  Google Scholar 

  7. Seliger, H. H. & McElroy, W. D. The colors of firefly bioluminescence: Enzyme configuration and species specificity. Proc. Natl Acad. Sci. USA 52, 75–81 (1964).

    Article  ADS  Google Scholar 

  8. White, E. H., Rapaport, E., Seliger, H. H. & Hopkins, T. A. The chemi- and bioluminescence of firefly luciferin: An efficient chemical production of electronically excited states. Bioorgan. Chem. 1, 92–122 (1971).

    Article  Google Scholar 

  9. McCapra, F., Gilfoyle, D. J., Young, D. W., Church, N. J. & Spencer, P. in Bioluminescence and Chemiluminescence 387–391 (Wiley, Chichester, 1994).

    Google Scholar 

  10. DeLuca, M. Hydrophobic nature of the active site of firefly luciferase. Biochemistry 8, 160–166 (1969).

    Article  Google Scholar 

  11. Ugarova, N. N. & Brovko, L. Y. Protein structure and bioluminescent spectra for firefly bioluminescence. Luminescence 17, 321–330 (2002).

    Article  Google Scholar 

  12. Ugarova, N. N., Maloshenok, L. G., Uporov, I. V. & Koksharov, M. I. Bioluminescence spectra of native and mutant firefly luciferases as a function of pH. Biochemistry (Moscow) 70, 1262–1267 (2005).

    Article  Google Scholar 

  13. Branchini, B. R. et al. An alternative mechanism of bioluminescence color determination in firefly luciferase. Biochemistry 43, 7255–7262 (2004).

    Article  Google Scholar 

  14. Nakatsu, T. et al. Structural basis for the spectral difference in luciferase bioluminescence. Nature 440, 372–376 (2006).

    Article  ADS  Google Scholar 

  15. Min, K. L. & Steghens J. P. The emitting species dissociated from the enzyme can emit the light in Photinus pyralis luciferase system. Biochem. Biophys. Res. Commun. 265, 273–278 (1999).

    Article  Google Scholar 

  16. Green, A. A. & McElroy, W. D. Crystalline firefly luciferase. Biochem. Biophys. Acta. 20, 170–176 (1956).

    Article  Google Scholar 

  17. Bitler, B. & McElroy, W. D. The preparation and properties of crystalline firefly luciferin. Arch. Biochem. Biophys. 72, 358–368 (1957).

    Article  Google Scholar 

  18. Wood, K. V., Lam, Y. A., Seliger, H. H. & McElroy, W. D. Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors. Science 244, 700–702 (1989).

    Article  ADS  Google Scholar 

  19. Ohmiya, Y. Basic and applied aspects of color tuning of bioluminescence system. Jpn J. Appl. Phys. 44, 6368–6379 (2005).

    Article  ADS  Google Scholar 

  20. Ando, Y., Akiyama, H., Kubota, H., Niwa, K. & Ohmiya, Y. in Recent Progress of Bio/Chemiluminescence and Fluorescence Analysis in Photosynthesis 79–100 (Research Signpost, Kerala, 2005).

    Google Scholar 

  21. Ando, Y. et al. Development of a quantitative bio/chemiluminescence spectrometer determining quantum yields: Reexamination of the aqueous luminol chemiluminescence standard. Photochem. Photobiol. 83, 1205–1210 (2007).

    Article  Google Scholar 

  22. Helle, P., Brau, F., Steghens, J. P. & Bernengo J. C. A new low-light level instrumentation for chemi- and bio-luminescence spectroscopy, in Bioluminescence and Chemiluminescence 195–198 (Wiley, Chichester, 1999).

    Google Scholar 

  23. Lee, J. & Seliger, H. H. Absolute spectral sensitivity of phototubes and the application to the measurement of the absolute quantum yields of chemiluminescence and bioluminescence. Photochem. Photobiol. 4, 1015–1048 (1965).

    Article  Google Scholar 

  24. O'Kane, D. J., Ahmad, M., Matheson, I. B. C. & Lee, J. Purification of bacterial luciferase by high-performance liquid chromatography. Methods Enzymol. 133, 109–128 (1986).

    Article  Google Scholar 

  25. Johnson, F. H. et al. Quantum efficiency of Cypridina luminescence with a note on that of Aequorea. J. Cell. Comp. Physiol. 60, 85–104 (1962).

    Article  Google Scholar 

  26. Shimomura, O. Isolation and properties of various molecular forms of Aequorin. Biochem. J. 234, 271–277 (1986).

    Article  Google Scholar 

  27. Hastings, J. W. & Nealson, K. H. Bacterial bioluminescence. Annu. Rev. Microbiol. 31, 549–595 (1977).

    Article  Google Scholar 

  28. Dawson, R. M. C. Data for Biochemical Research 2nd edn, 475–508 (Clarendon, Oxford, 1969).

    Google Scholar 

Download references

Acknowledgements

We thank J.W. Hastings, T. Wilson and O. Shimomura for valuable discussions and comments.

Author information

Authors and Affiliations

Authors

Contributions

Y.A., Y.O. and H.A. conceived and designed the experiments. Y.A. and K.N. performed the experiments. Y.A., K.N., Y.O. and H.A. analysed the data. Y.A., K.N., N.Y., T.E., and H.K. contributed materials and analysis tools. Y.A. and H.A. produced the figures and wrote the paper.

Corresponding author

Correspondence to Yoriko Ando.

Supplementary information

Supplementary Information

Supplementary information: discussion and figure S1 (PDF 239 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ando, Y., Niwa, K., Yamada, N. et al. Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission. Nature Photon 2, 44–47 (2008). https://doi.org/10.1038/nphoton.2007.251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing