Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Signal regeneration using low-power four-wave mixing on silicon chip


To meet the increasing demand for higher capacity in optical communications, signal transmission at higher modulation rates and over a broader wavelength range will be required. Signal degradation in the optical channel caused by dispersion, nonlinearity and noise becomes a critical issue as data rates increase. Thus, it is highly desirable to develop broadband, high-speed regeneration devices1. Recent advances in silicon-on-insulator photonic devices offer the potential for highly integrated, robust opto–electronic architectures, and optical processes such as amplification2,3,4, wavelength conversion5,6,7 and amplitude modulation8,9 have already been demonstrated in such structures. In this work, we demonstrate two regeneration schemes using low-power four-wave mixing in a silicon nanowaveguide and compensate for the effects of poor extinction ratio, dispersive broadening and timing jitter. This capability further expands the range of optical functions that can be incorporated into silicon-compatible photonic devices offering a broadband and integrated solution for regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different configurations for signal regeneration using FWM.
Figure 2: FWM wavelength conversion in a silicon nanowire.
Figure 3: Signal regeneration using configuration B.
Figure 4: Signal regeneration using configuration D.

Similar content being viewed by others


  1. Leclerc, O. et al. Optical regeneration at 40 Gb/s and beyond. J. Lightwave Technol. 12, 2779–2790 (2003).

    Article  ADS  Google Scholar 

  2. Claps, R., Dimitropoulos, D., Raghunathan, V., Han, Y. & Jalali, B. Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 11, 1731–1739 (2003).

    Article  ADS  Google Scholar 

  3. Espinola, R. L., Dadap, J. I., Osgood, R. M. Jr, McNab, S. J. & Vlasov, Y. A. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express 12, 3713–3718 (2004).

    Article  ADS  Google Scholar 

  4. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    Article  ADS  Google Scholar 

  5. Fukada, H. et al. Four-wave mixing in silicon wire waveguides. Opt. Express 13, 4629–4637 (2005).

    Article  ADS  Google Scholar 

  6. Kuo, Y.-H. et al. Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. Opt. Express 14, 11721–11726 (2006).

    Article  ADS  Google Scholar 

  7. Foster, M. A. et al. Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt. Express 15, 12949–12958 (2007).

    Article  ADS  Google Scholar 

  8. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  9. Liao, L. et al. High speed silicon Mach–Zehnder modulator. Opt. Express 13, 3129–3135 (2005).

    Article  ADS  Google Scholar 

  10. Mamyshev, P. V. All-optical data regeneration based on self-phase modulation effect. Proc. European Conference on Optical Communications (ECOC'98), p. 475 (IEEE, 1998).

  11. Rochette, M., Fu, L., Ta'eed, V., Moss, D. J. & Eggleton, B. J. 2R optical regeneration: an all-optical solution for BER improvement. IEEE J. Sel. Top. Quant. Electron. 12, 736–744 (2006).

    Article  ADS  Google Scholar 

  12. Salem, R. et al. All-optical regeneration on a silicon chip. Opt. Express 15, 7802–7809 (2007).

    Article  ADS  Google Scholar 

  13. Ciaramella, E., Curti, F. & Trillo, S. All-optical signal reshaping by means of four-wave mixing in optical fibers. IEEE Photon. Technol. Lett. 13, 142–144 (2001).

    Article  ADS  Google Scholar 

  14. Bogris, A. & Syvridis, D. Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers. J. Lightwave Technol. 21, 1892–1902 (2003).

    Article  ADS  Google Scholar 

  15. Simos, H., Bogris, A. & Syvridis, D. Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier. IEEE Photon. Technol. Lett. 22, 595–597 (2004).

    Google Scholar 

  16. Gosset, C. & Duan, G.-H. Extinction ratio improvement and wavelength conversion based on four-wave mixing in a semiconductor optical amplifier. IEEE Photon. Technol. Lett. 13, 139–141 (2001).

    Article  ADS  Google Scholar 

  17. Su, Y., Wang, L., Agrawal, A. & Kumar, P. Simultaneous 3R regeneration and wavelength conversion using a fiber-parametric limiting amplifier. Proc. Optical Fiber Communication Conference (OFC), p. MG4-1–MG4-3 (IEEE, 2001).

  18. Radic, R., McKinstrie, C. J., Jopson, R. M., Centanni, J. C. & Chraplyvy, A. R. All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber. IEEE Photon. Technol. Lett. 15, 957–959 (2003).

    Article  ADS  Google Scholar 

  19. Yu, C. et al. Wavelength-shift-free 3R regeneration for 40-Gb/s RZ system by optical parametric amplification in fiber. IEEE Photon. Technol. Lett. 18, 2569–2571 (2006).

    Article  ADS  Google Scholar 

  20. Suzuki, J., Tanemura, T., Taira, K., Ozeki, Y. & Kikuchi, K. All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber. IEEE Photon. Technol. Lett. 17, 423–425 (2005).

    Article  ADS  Google Scholar 

  21. D'Ottavi, A. et al. Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval. IEEE Photon. Technol. Lett. 10, 952–954 (1998).

    Article  ADS  Google Scholar 

  22. Boyraz, O., Koonath, O., Raghunathan, V. & Jalali, B. All optical switching and continuum generation in silicon waveguides. Opt. Express 12, 4094–4102 (2004).

    Article  ADS  Google Scholar 

  23. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    Article  ADS  Google Scholar 

  24. Okawachi, Y. et al. All-optical slow-light on a photonic chip. Opt. Express 14, 2317–2322 (2006).

    Article  ADS  Google Scholar 

  25. Foster, M. A., Moll, K. D. & Gaeta, A. L. Optimal waveguide dimensions for nonlinear interactions. Opt. Express 12, 2880–2887 (2004).

    Article  ADS  Google Scholar 

  26. Turner, A. C., Foster, M. A., Schmidt, B. S., Gaeta, A. L. & Lipson, M. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express 14, 4357–4362 (2006).

    Article  ADS  Google Scholar 

  27. Shake, I. & Takara, H. Averaged Q-factor method using amplitude histogram evaluation for transparent monitoring of optical signal-to-noise ratio degradation in optical transmission system. J. Lightwave Technol. 20, 1367–1373 (2002).

    Article  ADS  Google Scholar 

  28. Salem, R., Tudury, G. E., Horton, T. U., Carter, G. M. & Murphy, T. E. Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode. IEEE Photon. Technol. Lett. 17, 1968–1970 (2005).

    Article  ADS  Google Scholar 

  29. Inoue, K. Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies. J. Lightwave Technol. 12, 1916–1920 (1994).

    Article  ADS  Google Scholar 

  30. Morioka, T., Kawanishi, S., Uchiyama, K., Takara, H. & Saruwatari, M. Polarisation-independent 100 Gbit/s all-optical demultiplexer using four-wave mixing in a polarization-maintaining fibre loop. Electron. Lett. 30, 591–592 (1994).

    Article  ADS  Google Scholar 

Download references


We acknowledge financial support from the Defense Advanced Research Project Agency (DARPA) Defense Sciences Office (DSO) Slow-Light Program and the Center for Nanoscale Systems, supported by the National Science Foundation (NSF) and the New York State Office of Science, Technology & Academic Research. M.A.F. acknowledges support from the IBM Graduate Fellowship Program.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alexander L. Gaeta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salem, R., Foster, M., Turner, A. et al. Signal regeneration using low-power four-wave mixing on silicon chip. Nature Photon 2, 35–38 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing