Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plasmonic all-optical tunable wavelength shifter

Abstract

At present, wavelength-division-multiplexed fibre lines routinely operate at 10 Gbit s−1 per channel. The transition from static-path networks to true all-optical networks encompassing many nodes, in which channels are added/dropped and efficiently reassigned, will require improved tools for all-optical wavelength shifting. Specifically, one must be able to shift the carrier wavelength (frequency) of an optical data signal over tens of nanometres (a THz range) without the bottleneck of electrical conversion. Popular approaches to this problem make use of the nonlinear interaction between two wavelengths within a semiconductor optical amplifier1 whereas more novel methods invoke terahertz-frequency electro–optic modulation2 and polaritons3. Here we outline the principles and demonstrate the use of optically excited plasmons as a tunable frequency source that can be mixed with a laser frequency through Raman scattering. The scheme is all-optical and enables dynamical control of the output carrier wavelength simply by varying the power of a control laser.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram showing one period of the MTQW structure.
Figure 2: Downshifted light-scattering spectra from the MTQW for different values of control-beam intensity.
Figure 3: The LO-P peak frequency and the LO peak height as a function of the control-beam intensity.
Figure 4

Similar content being viewed by others

References

  1. Campi, D. & Coriasso, C. Wavelength conversion technologies. Photon. Network Commun. 2, 85–95 (2000).

    Article  Google Scholar 

  2. Su, M. Y., Carter, S. G., Sherwin, M. S., Huntington, A. & Coldren, L. A. Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum wells. Appl. Phys. Lett. 81, 1564–1566 (2002).

    Article  ADS  Google Scholar 

  3. Nelson, K. A. Dynamic wavelength shifting method. US patent 6,717,717 (2004).

  4. Oberson, P., Huttner, B. & Gisin, N. Frequency modulation via the Doppler effect in optical fibers. Opt. Lett. 24, 451–453 (1999).

    Article  ADS  Google Scholar 

  5. Preble, S. F., Xu, Q. & Lipson, M. Changing the colour of light in a silicon resonator. Nature Photon. 1, 293–296 (2007).

    Article  ADS  Google Scholar 

  6. Jalali, B., Raghunathan, V., Dimitropoulos, D. & Boyraz, Ö. Raman-based silicon photonics. IEEE J. Sel. Top. Quant. Electron. 12, 412–421 (2006).

    Article  ADS  Google Scholar 

  7. Mooradian, A. & White, G. B. Observation of the interaction of plasmons with longitudinal optical phonons in GaAs. Phys. Rev. Lett. 16, 999–1001 (1966).

    Article  ADS  Google Scholar 

  8. Mooradian, A. & McWhorter, A. L. Polarization and intensity of Raman scattering from plasmons and phonons in gallium arsenide. Phys. Rev. Lett. 19, 849–852 (1967).

    Article  ADS  Google Scholar 

  9. Pinczuk, A., Shah, J. & Wolff, P. A. Collective modes of photoexcited electron–hole plasmas in GaAs. Phys. Rev. Lett. 47, 1487–1490 (1981).

    Article  ADS  Google Scholar 

  10. Galbraith, I., Dawson, P. & Foxon, C. T. Optical nonlinearities in mixed type I – type II GaAs/AlAs multiple quantum wells. Phys. Rev. B 45, 13499–13508 (1992).

    Article  ADS  Google Scholar 

  11. Guliamov, R., Lifshitz, E., Cohen, E., Ron, A. & Pfeiffer, L. N. Indirect barrier electron–hole gas transitions in mixed type-I–type-II GaAs/AlAs multiple quantum wells. Phys. Rev B 64, 035314 (2001).

    Article  ADS  Google Scholar 

  12. Burstein, E., Pinczuk, A. & Mills, D. L. Inelastic light scattering by charge carrier excitations in two-dimensional plasmas: theoretical considerations. Surf. Sci. 98, 451–468 (1980).

    Article  ADS  Google Scholar 

  13. Pinczuk, A. & Abstreiter, G. in Topics in Applied Physics 66, Light Scattering in Solids V (ed. Cardona, M. & Güntherodt, G.) 174–176 (Springer, Berlin, 1989).

    Google Scholar 

  14. Pinczuk, A. et al. Large exchange interactions in the electron gas of GaAs quantum wells. Phys. Rev. Lett. 63, 1633–1636 (1989).

    Article  ADS  Google Scholar 

  15. Galbraith, I., Dawson, P. & Foxon, C. T. Optical nonlinearities in mixed type I – type II GaAs/AlAs multiple quantum wells. Phys. Rev. B 45, 13499–13508 (1992).

    Article  ADS  Google Scholar 

  16. Rickter, W. in Springer Tracts in Modern Physics 78, Solid State Physics (ed. Höhler, G.) 121–272 (Springer, New York, 1976).

    Google Scholar 

  17. Fainstein, A., Jusserand, B. & Theirry-Mieg, V. Raman scattering enhancement by optical confinement in a semiconductor planar microcavity. Phys. Rev. Lett. 75, 3764–3767 (1995).

    Article  ADS  Google Scholar 

  18. Vörös, Z., Balili, R., Snoke, D. W., Pfeiffer, L. & West, K. Long-distance diffusion of excitons in double quantum well structures. Phys. Rev. Lett. 94, 226401 (2005).

    Article  ADS  Google Scholar 

  19. Ludwig, R. & Rabon, G. BER measurements of frequency converted signals using four-wave mixing in a semiconductor laser amplifier at 1, 2.5, 5 and 10 Gbit.s. Electron. Lett. 30, 338–339 (1994).

    Article  Google Scholar 

  20. Jinno, M., Miyamoto, Y. & Hibino, Y. Optical-transport networks in 2015. Nature Photon. 1, 157–159 (2007).

    Article  ADS  Google Scholar 

  21. O'Dowd, R. et al. Transmitters for two-tier optical data-packet labeling in advanced IP networks. IEE Proc. Optoelectron. 152, 163–169 (2005).

    Article  Google Scholar 

  22. Liu, J. T. C., Jeffries, J. B. & Hanson, R. K. Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows. Appl. Phys. B 78, 503–511 (2004).

    Article  ADS  Google Scholar 

  23. Zheng, J. Analysis of optical frequency-modulated continuous-wave interference. Appl. Opt. 43, 4189–4198 (2004).

    Article  ADS  Google Scholar 

  24. Manassen, A., Cohen, E., Ron, A., Linder, E. & Pfeiffer, L. N. Exciton and trion spectral line shape in the presence of an electron gas in GaAs/AlAs quantum wells. Phys. Rev. B 54, 10609–10613 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Cohen for supplying us with the MTQW samples used earlier in his studies. This research is supported by the US Department of Energy Office of Science, Basic Energy Sciences under contract numbers DE-AC36-83CH10093 and DE-FG02-99ER45780.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Fluegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fluegel, B., Mascarenhas, A., Snoke, D. et al. Plasmonic all-optical tunable wavelength shifter. Nature Photon 1, 701–703 (2007). https://doi.org/10.1038/nphoton.2007.229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing