Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bright, multicoloured light-emitting diodes based on quantum dots


Quantum-dot-based LEDs are characterized by pure and saturated emission colours with narrow bandwidth, and their emission wavelength is easily tuned by changing the size of the quantum dots. However, the brightness, efficiency and lifetime of LEDs need to be improved to meet the requirements of commercialization in the near future. Here, we report red, orange, yellow and green LEDs with maximum luminance values of 9,064, 3,200, 4,470 and 3,700 cd m−2, respectively, the highest values reported so far. Solution-processable core–shell quantum dots with a CdSe core and a ZnS or CdS/ZnS shell were used as emissive layers in the devices. By optimizing the thicknesses of the constituent layers of the devices, we were able to develop quantum-dot-based LEDs with improved electroluminescent efficiency (1.1–2.8 cd A−1), low turn-on voltages (3–4 V) and long operation lifetimes. These findings suggest that such quantum-dot-based LEDs will be promising for use in flat-panel displays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures, images and HOMO and LUMO energy levels of the QD-LEDs.
Figure 2: Electroluminescence performance of the QD-LEDs.
Figure 3: Lifetime characteristics of a red-emitting QD-LED.
Figure 4: Effect of QD layer thickness on EL performance of the QD-LEDs.
Figure 5: EL efficiency versus current plots of the red-emitting QD-LEDs with an HTL of 45 nm, a QD layer of 2 ML and different ETL thicknesses.

Similar content being viewed by others


  1. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  ADS  Google Scholar 

  2. Dabbousi, B. O., Bawendi, M. G., Onitsuka, O. & Rubner, M. F. Electroluminescence from CdSe quantum-dot/polymer composites. Appl. Phys. Lett. 66, 1316–1318 (1995).

    Article  ADS  Google Scholar 

  3. Coe, S., Woo, W.-K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  ADS  Google Scholar 

  4. Zhao, J. et al. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett. 6, 463–467 (2006).

    Article  ADS  Google Scholar 

  5. Hikmet, R. A. M., Chin, P. T. K., Talapin, D. V. & Weller, H. Polarized-light-emitting quantum-rod diodes. Adv. Mater. 17, 1436–1439 (2005).

    Article  Google Scholar 

  6. Coe-Sullivan, S., Steckel, J. S., Woo, W.-K., Bawendi, M. G. & Bulović, V. Large-area ordered quantum-dot monolayers via phase separation during spin-casting. Adv. Funct. Mater. 15, 1117–1124 (2005).

    Article  Google Scholar 

  7. Schlamp, M. C., Peng, X. & Alivisatos, A. P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82, 5837–5842 (1997).

    Article  ADS  Google Scholar 

  8. Steckel, J. S. et al. Color-saturated green-emitting QD-LEDs. Angew. Chem. Int. Edn 45, 5796–5799 (2006).

    Article  Google Scholar 

  9. Steckel, J. S. et al. Blue luminescence from (CdS)ZnS core–shell nanocrystals. Angew. Chem. Int. Edn 43, 2154–2158 (2004).

    Article  Google Scholar 

  10. Mueller, A. H. et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 5, 1039–1044 (2005).

    Article  ADS  Google Scholar 

  11. Zhao, J. et al. Electroluminescence from isolated CdSe/ZnS quantum dots in multilayered light-emitting diodes. J. Appl. Phys. 96, 3206–3210 (2004).

    Article  ADS  Google Scholar 

  12. Chaudhary, S., Ozkan, M. & Chan, W. C. W. Trilayer hybrid polymer-quantum dot light-emitting diodes. Appl. Phys. Lett. 84, 2925–2927 (2004).

    Article  ADS  Google Scholar 

  13. Gao, M. et al. Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films. J. Appl. Phys. 87, 2297–2302 (2000).

    Article  ADS  Google Scholar 

  14. O'Connor, E. et al. Near-infrared electroluminescent devices based on colloidal HgTe quantum dot arrays. Appl. Phys. Lett. 86, 201114 (2005).

    Article  ADS  Google Scholar 

  15. Steckel, J. S. & Bowendi, M. G. 1.3–1.55 µm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 15, 1682–1686 (2003).

    Article  Google Scholar 

  16. Bakueva, L. et al. Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer. Appl. Phys. Lett. 82, 2895–2897 (2003).

    Article  ADS  Google Scholar 

  17. Murray, C. B. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  ADS  Google Scholar 

  18. Qu, L. & Peng, X. Control of photoluminescence properties of CdSe nanocrystals. J. Am. Chem. Soc. 124, 2049–2056 (2002).

    Article  Google Scholar 

  19. Coe-Sullivan, S., Steckel, J. S., Kim, L. A., Bawendi, M. G. & Bulović, V. Method for fabrication of saturated RGB quantum dot light emitting devices. Proc. SPIE 5739, 108–115 (2005).

    Article  ADS  Google Scholar 

  20. Li, Y. Q. et al. White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter. J. Appl. Phys. 97, 113501 (2005).

    Article  ADS  Google Scholar 

  21. Xu, J. et al. Microcavity light emitting devices based on colloidal semiconductor nanocrystal quantum dots. IEEE Photon. Technol. Lett. 17, 2008–2010 (2005).

    Article  ADS  Google Scholar 

  22. Peng, Z. A. & Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001).

    Article  Google Scholar 

  23. Li, J. J. et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003).

    Article  Google Scholar 

  24. Qu, L., Peng, Z. A. & Peng, X. Alternative routes towards high quality CdSe nanocrystals. Nano Lett. 1, 333–337 (2001).

    Article  ADS  Google Scholar 

  25. Carter, J. C. et al. Operating stability of light-emitting polymer diodes based on poly(p-phenylene vinylene). Appl. Phys. Lett. 71, 34–36 (1997).

    Article  ADS  Google Scholar 

  26. Sun, Q. J. et al. White light from polymer light-emitting diodes: utilization of fluorenone defects and exciplex. Appl. Phys. Lett. 88, 163510 (2006).

    Article  ADS  Google Scholar 

  27. Sun, Q. J., Hou, J. H., Yang, C. H., Li, Y. F. & Yang, Y. Enhanced performance of white polymer light-emitting diodes using polymer blends as hole-transporting layers. Appl. Phys. Lett. 89, 153501 (2006).

    Article  ADS  Google Scholar 

  28. Tang C. W. & Van Slyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  ADS  Google Scholar 

  29. Yu, W. W., Qu, L., Guo, W. & Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater. 15, 2854–2860 (2003).

    Article  Google Scholar 

Download references


This work was supported by the Ministry of Science and Technology of China (973 project, No. 2002CB613404) and NSFC (No. 20421101 and 50633050). Y.A.W. acknowledges funding from the National Science Foundation SBIR program (award number: 0638209). We thank Ghassan Jabbour for the calculation of the CIE of the QD-LED emission.

Author information

Authors and Affiliations



Q.J.S., C.H.Y. and Y.F.L. designed, fabricated and characterized the devices. Y.A.W., L.S.L. and D.Y.W. designed and synthesized the quantum dots. T.Z. and J.X. measured the device lifetimes and calculated the thicknesses of the QD layers.

Corresponding authors

Correspondence to Y. Andrew Wang or Yongfang Li.

Supplementary information

Supplementary Information

Supplementary information and figures S1-S3 (PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q., Wang, Y., Li, L. et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nature Photon 1, 717–722 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing