Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nano-optics from sensing to waveguiding

Abstract

The design and realization of metallic nanostructures with tunable plasmon resonances has been greatly advanced by combining a wealth of nanofabrication techniques with advances in computational electromagnetic design. Plasmonics — a rapidly emerging subdiscipline of nanophotonics — is aimed at exploiting both localized and propagating surface plasmons for technologically important applications, specifically in sensing and waveguiding. Here we present a brief overview of this rapidly growing research field.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Nanoparticle resonances.
Figure 2: Tunability of nanoshells.
Figure 3: Surface-enhanced Raman spectroscopy.
Figure 4: Micrographs showing the spatial sensitivity of launching plasmons.
Figure 5: Y-splitter and Mach–Zehnder interferometer for plasmons78.

References

  1. Raether, H. R. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1988).

    Book  Google Scholar 

  2. Maier, S. Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

    Book  Google Scholar 

  3. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  4. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Book  Google Scholar 

  5. Grady, N. K., Halas, N. J. & Nordlander, P. Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chem. Phys. Lett. 399, 167–171 (2004).

    Article  ADS  Google Scholar 

  6. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    Article  Google Scholar 

  7. Mock, J. J., Smith, D. R. & Schultz, S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 3, 485–491 (2003).

    Article  ADS  Google Scholar 

  8. Underwood, S. & Mulvaney, P. Effect of the solution refractive index on the color of gold colloids. Langmuir 10, 3427–3430 (1994).

    Article  Google Scholar 

  9. Grabar, K. C., Freeman, R. G., Hommer, M. B. & Natan, M. J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 67, 735–743 (1995).

    Article  Google Scholar 

  10. Hulteen, J. C. & Van Duyne, R. P. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 13, 1553–1558 (1995).

    Article  ADS  Google Scholar 

  11. Bastys, V., Pastoriza-Santos, I., Rodríguez-González, B., Vaisnoras, R. & Liz-Marzán, L. M. Formation of silver nanoprisms with surface plasmons at communication wavelengths. Adv. Funct. Mater. 16, 766–773 (2006).

    Article  Google Scholar 

  12. Nikoobakht, B. & El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003).

    Article  Google Scholar 

  13. Sun, Y. G. & Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  ADS  Google Scholar 

  14. Oldenburg, S. J., Averitt, R. D., Westcott, S. L. & Halas, N. J. Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998).

    Article  ADS  Google Scholar 

  15. Jackson, J. B. & Halas, N. J. Silver nanoshells: Variations in morphologies and optical properties. J. Phys. Chem. B 105, 2743–2746 (2001).

    Article  Google Scholar 

  16. Sun, Y., Mayers, B. & Xia, Y. Metal nanostructures with hollow interiors. Adv. Mater. 15, 641–646 (2003).

    Article  Google Scholar 

  17. Wang, H., Brandl, D. W., Le, F., Nordlander, P. & Halas, N. J. Nanorice: A hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006).

    Article  ADS  Google Scholar 

  18. Landes, C. F., Link, S., Mohamed, M. B., Nikoobakht, B. & El-Sayed, M. A. Some properties of spherical and rod-shaped semiconductor and metal nanocrystals. Pure Appl. Chem. 74, 1675–1692 (2002).

    Article  Google Scholar 

  19. McLellan, J. M., Siekkinen, A. R. & Xia, Y. The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett. 7, 1013–1017 (2007).

    Article  ADS  Google Scholar 

  20. Prodan, E. & Nordlander, P. Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 120, 5444–5454 (2004).

    Article  ADS  Google Scholar 

  21. Mie, G. Articles on the optical characteristics of turbid media, especially colloidal metal solutions. Ann. Phys. (Leipz.) 25, 377–445 (1908).

    Article  ADS  Google Scholar 

  22. Aden, A. L. & Kerker, M. Scattering of electromagnetic waves from two concentric spheres. J. App. Phys. 22, 1242–1246 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  23. Draine, B. T. & Flatau, P. J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491–1499 (1994).

    Article  ADS  Google Scholar 

  24. Futamata, M., Maruyama, Y. & Ishikawa, M. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. J. Phys. Chem. B 107, 7607–7617 (2003).

    Article  Google Scholar 

  25. Oubre, C. & Nordlander, P. Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J. Phys. Chem. B 108, 17740–17747 (2004).

    Article  Google Scholar 

  26. Hayes, C. L. & Van Duyne, R. P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 107, 7426–7433 (2003).

    Article  Google Scholar 

  27. Liao, H., Nehl, C. L. & Hafner, J. H. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1, 201–208 (2006).

    Article  Google Scholar 

  28. Haes, A. & Van Duyne, R. P. A unified view of propagating and localized surface plasmon resonance biosensors. Anal. Bioanal. Chem. 379, 920–930 (2004).

    Article  Google Scholar 

  29. Taton, T. A., Mirkin, C. A. & Letsinger, R. L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000).

    Article  ADS  Google Scholar 

  30. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2006).

    Book  Google Scholar 

  31. Jeanmaire, D. L. & Van Duyne, R. P. Surface raman spectroelectrochemistry: Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrodes. J. Electroanal. Chem. 84, 1–20 (1977).

    Article  Google Scholar 

  32. Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977).

    Article  Google Scholar 

  33. Kneipp, K. et al. Single molecule detection using surface enhanced Raman scattering. Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  ADS  Google Scholar 

  34. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  Google Scholar 

  35. Lal, S., Grady, N. K., Goodrich, G. P. & Halas, N. J. Profiling the near field of a plasmonic nanoparticle with Raman-based molecular rulers. Nano Lett. 6, 2338–2343 (2006).

    Article  ADS  Google Scholar 

  36. Talley, C. E. et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5, 1569–1574 (2005).

    Article  ADS  Google Scholar 

  37. McFarland, A. D., Young, M. A., Dieringer, J. A. & Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 109, 11279–11285 (2005).

    Article  Google Scholar 

  38. Jennings, C. & Aroca, R. Surface-enhanced Raman scattering from copper and zinc phthalocyanine complexes by silver and indium island films. Anal. Chem. 56, 2033–2035 (1984).

    Article  Google Scholar 

  39. Michaels, A. M., Jiang, J. & Brus, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 104, 11965–11971 (2000).

    Article  Google Scholar 

  40. Drachev, V. P. et al. Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules. J. Raman Spectrosc. 36, 648–656 (2005).

    Article  ADS  Google Scholar 

  41. Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004).

    Article  ADS  Google Scholar 

  42. Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt. Comm. 220, 137–141 (2003).

    Article  ADS  Google Scholar 

  43. Atay, T., Song, J.-H. & Nurmikko, A. V. Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime. Nano Lett. 4, 1627–1631 (2004).

    Article  ADS  Google Scholar 

  44. Gunnarsson, L. et al. Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions. J. Phys. Chem. B 109, 1079–1087 (2005).

    Article  Google Scholar 

  45. Romero, I., Aizpurua, J., Bryant, G. W. & de Abajo, F. J. G. Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers. Opt. Express 14, 9988–9999 (2006).

    Article  ADS  Google Scholar 

  46. Wang, H. et al. Symmetry-breaking in individual plasmonic nanoparticles. Proc. Natl Acad. Sci. USA 103, 10856–10860 (2006).

    Article  ADS  Google Scholar 

  47. Brandl, D. W., Mirin, N. A. & Nordlander, P. Plasmon modes of nanosphere trimers and quadrumers. J. Phys. Chem. B 110, 12302–12310 (2006).

    Article  Google Scholar 

  48. Jackson, J. B. & Halas, N. J. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc. Natl Acad. Sci. 101, 17930–17935 (2004).

    Article  ADS  Google Scholar 

  49. Jackson, J. B., Westcott, S. L., Hirsch, L. R., West, J. L. & Halas, N. J. Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl. Phys. Lett. 82, 257–259 (2003).

    Article  ADS  Google Scholar 

  50. Wang, H., Le, F., Kundu, J., Nordlander, P. & Halas, N. J. Nanoshell arrays as multifunctional surface enhanced Raman/IR spectroscopic substrates. Angew. Chem. Int. Edn (in the press).

  51. Wang, H. et al. Controlled texturing modifies the surface topography and plasmonic properties of Au nanoshells. J. Phys. Chem. B 109, 11083–11087 (2005).

    Article  Google Scholar 

  52. Zhang, W. et al. Nanoscale roughness on metal surfaces can increase tip-enhanced Raman scattering by an order of magnitude. Nano Lett. 7, 1401–1405 (2007).

    Article  ADS  Google Scholar 

  53. Neacsu, C. C., Dreyer, J., Behr, N. & Raschke, M. B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys. Rev. B 73, 193406 (2006).

    Article  ADS  Google Scholar 

  54. Pettinger, B. Tip-enhanced Raman spectroscopy (TERS). Top. Appl. Phys. 103, 217–240 (2006).

    Article  Google Scholar 

  55. Verma, P., Inouye, Y. & Kawata, S. Surface-enhanced Raman Scattering: Physics and Applications – Topics in Applied Physics (eds Kneipp, K., Moskovits, M. & Kneipp, M.) 241–262 (Springer, Berlin, 2006).

    Book  Google Scholar 

  56. Domke, K. F., Zhang, D. & Pettinger, B. Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). J. Am. Chem. Soc. 128, 14721–14727 (2006).

    Article  Google Scholar 

  57. Maier, S. A. et al. Plasmonics - A route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001).

    Article  Google Scholar 

  58. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  59. Dittlbacher, H. et al. Fluorescence imaging of surface plasmon fields. Appl. Phys. Lett. 80, 404–406 (2002).

    Article  ADS  Google Scholar 

  60. Yin, L. et al. Subwavelength focusing and guiding of surface plasmons. Nano Lett. 5, 1399–1402 (2005).

    Article  ADS  Google Scholar 

  61. Charbonneau, R., Berini, P., Berolo, E. & Lisicka-Shrzek, E. Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width. Opt. Lett. 25, 844–846 (2000).

    Article  ADS  Google Scholar 

  62. Krenn, J. R. et al. Non-diffraction-limited light transport by gold nanowires. Europhys. Lett. 60, 663–669 (2002).

    Article  ADS  Google Scholar 

  63. Lamprecht, B. et al. Surface plasmon propagation in micrsoscale metal stripes. App. Phys. Lett. 79, 51–53 (2001).

    Article  ADS  Google Scholar 

  64. Zia, R., Selker, M. D. & Brongersma, M. L. Leaky and bound modes of surface plasmon waveguides. Phys. Rev. B 71, 165431 (2005).

    Article  ADS  Google Scholar 

  65. Zia, R., Schuller, J. A. & Brongersma, M. L. Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides. Phys. Rev. B 74, 165415 (2006).

    Article  ADS  Google Scholar 

  66. Dickson, R. M. & Lyon, L. A. Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B 104, 6095–6098 (2000).

    Article  Google Scholar 

  67. Sanders, A. W. et al. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett. 6, 1822–1826 (2006).

    Article  ADS  Google Scholar 

  68. Graff, A., Wagner, D., Ditlbacher, H. & Kreibig, U. Silver nanowires. Euro. Phys. J. D 34, 263–269 (2005).

    Article  ADS  Google Scholar 

  69. Knight, M. W. et al. Nanoparticle-mediated coupling of light into a nanowire. Nano Lett. 7, 2346–2350 (2007).

    Article  ADS  Google Scholar 

  70. Quinten, M., Leitner, A., Krenn, J. R. & Aussenegg, F. R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998).

    Article  ADS  Google Scholar 

  71. Maier, S. A., Brongersma, M. L., Kik, P. G. & Atwater, H. A. Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys. Rev. B 65, 193408 (2002).

    Article  ADS  Google Scholar 

  72. Maier, S. A., Kik, P. G. & Atwater, H. A. Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Appl. Phys. Lett. 81, 1714–1716 (2002).

    Article  ADS  Google Scholar 

  73. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    Article  ADS  Google Scholar 

  74. Lin, S., Li, M., Dujardin, E., Girard, C. & Mann, S. One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks. Adv. Mater. 17, 2553–2559 (2005).

    Article  Google Scholar 

  75. Zia, R., Selker, M. D., Catrysse, P. B. & Brongersma, M. I. Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21, 2442–2446 (2004).

    Article  ADS  Google Scholar 

  76. Dionne, J. A., Sweatlock, L. A., Atwater, H. A. & Polman, A. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006).

    Article  ADS  Google Scholar 

  77. Dionne, J. A., Lezec, H. J. & Atwater, H. A. Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett. 6, 1928–1932 (2006).

    Article  ADS  Google Scholar 

  78. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  ADS  Google Scholar 

  79. Zhang, W., Yeo, B. S., Schmid, T. & Zenobi, R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111, 1733–1738 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

S. Lal acknowledges useful discussions with J. Britt Lassiter and Nathaniel K. Grady. This work was supported by the Robert A. Welch Foundation grants C-1664 and C-1220, and the Department of Defense Multidisciplinary University Research Initiative (MURI) grant W911NF-04-01-0203. Additional funding was provided by grants from the Air Force Office of Scientific Research, The National Science Foundation and National Aeronatics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi J. Halas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lal, S., Link, S. & Halas, N. Nano-optics from sensing to waveguiding. Nature Photon 1, 641–648 (2007). https://doi.org/10.1038/nphoton.2007.223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing