Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum communication

Abstract

Quantum communication, and indeed quantum information in general, has changed the way we think about quantum physics. In 1984 and 1991, the first protocol for quantum cryptography and the first application of quantum non-locality, respectively, attracted interest from a diverse field of researchers in theoretical and experimental physics, mathematics and computer science. Since then we have seen a fundamental shift in how we understand information when it is encoded in quantum systems. We review the current state of research and future directions in this field of science with special emphasis on quantum key distribution and quantum networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Revealing non-locality.
Figure 2: The Franson interferometer for testing the energy–time entanglement of the entanglement resource.
Figure 3: Simplifying the Franson scheme.
Figure 4: Quantum teleportation.
Figure 5: Quantum networks.

Similar content being viewed by others

References

  1. Bennett, C. H. & Brassard, G. in Int. Conf. Computers, Systems & Signal Processing, Bangalore 175–179 (1984).

    Google Scholar 

  2. Ekert, A. K. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  4. Popescu, S. & Rohrlich, D. Introduction to Quantum Computation and Information: The Joy of Entanglement (eds Lo, H.-K., Popescu, S. & Spiller, T.) (World Scientific, 1998).

    Google Scholar 

  5. Bell, J. S. Collected Papers on Quantum Philosophy: Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ. Press, Cambridge, 1987).

    MATH  Google Scholar 

  6. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993).

    ADS  MathSciNet  MATH  Google Scholar 

  7. Brassard, G. Quantum communication complexity. Found. Phys. 33, 1593–1616 (2003).

    MathSciNet  MATH  Google Scholar 

  8. Buhrman, H., Christandl, M., Hayden, P., Lo, H.-K. & Wehner, S. On the (im)possibility of quantum string commitment. Phys. Rev. Lett. (in the press); preprint at http://arxiv.org/abs/quant-ph/0504078 (2005).

    Google Scholar 

  9. Schrödinger, E. Probability relations between separated systems. Proc. Cambridge Phil. Soc. 32, 446 (1935).

    ADS  MATH  Google Scholar 

  10. Collins, D. & Gisin, N. A relevant two qubit Bell inequality inequivalent to the CHSH inequality. J. Phys. A 37, 1775–1787 (2004).

    ADS  MathSciNet  MATH  Google Scholar 

  11. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    ADS  MATH  Google Scholar 

  12. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969).

    ADS  MATH  Google Scholar 

  13. Gisin, B. & Gisin, N. A local hidden variable model of quantum correlation exploiting the detection loophole. Phys. Lett. A 260, 323–327 (1999).

    ADS  MathSciNet  MATH  Google Scholar 

  14. Rowe, M. A. et al. Experimental violation of a Bell's inequality with efficient detection. Nature 409, 791–794 (2001).

    ADS  Google Scholar 

  15. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell's inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982).

    ADS  MathSciNet  Google Scholar 

  16. Tittel, W., Brendel, J., Zbinden, H. & Gisin, N. Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998).

    ADS  Google Scholar 

  17. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell's inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  18. Zbinden, H., Gisin, N., Brendel, J. & Tittel, W. Experimental test of nonlocal quantum correlation in relativistic configurations. Phys. Rev. A 63, 022111 (2001).

    ADS  MATH  Google Scholar 

  19. Peng, C. et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005).

    ADS  Google Scholar 

  20. Acin, A., Gisin, N. & Masanes, L. From Bell's theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006).

    ADS  MATH  Google Scholar 

  21. Aspelmeyer, M., Jennewein, T., Pfennigbauer, M., Leeb, W. & Zeilinger, A. Long distance quantum communications with entangled photons using satellites. IEEE J. Sel. Top. Quant. Electron. 9, 1541–1551 (2003).

    ADS  Google Scholar 

  22. Franson, J. D. Bell inequality for position and time. Phys. Rev. Lett. 62, 2205–2208 (1989).

    ADS  Google Scholar 

  23. Tanzilli, S. et al. Highly efficient photon-pair source using a periodically poled lithium niobate waveguide. Electron. Lett. 37, 26–28 (2001).

    Google Scholar 

  24. Brendel, J., Mohler, E. & Martienssen, W. Experimental test of Bell's Inequality for energy and time. Europhys. Lett. 20, 575–580 (1992).

    ADS  Google Scholar 

  25. Kwiat, P. G., Steinberg, A. M. & Chiao, R. Y. High-visibility interference in a Bell-inequality experiment for energy and time. Phys. Rev. A 47, R2472–R2475 (1993).

    ADS  Google Scholar 

  26. Gisin, N. & Brunner, N. in Proc. Les Houches Summer School 2003 (eds Esteve, D., Raimond, J. M. & Dalibard, J.) 295–314 (Elsevier, Amsterdam, 2003).

    Google Scholar 

  27. Inamori, H., Lütkenhaus, N. & Mayers, D. Unconditional security of practical key distribution. European Phys. J. D (in the press); preprint at http://lanl.arxiv.org/abs/quant-ph/0107017 (2001).

    Google Scholar 

  28. Gottesman, D., Lo, H.-K., Lütkenhaus, N. & Preskill, J. Security of quantum key distribution with imperfect devices. Quant. Inf. Comput. 4, 325–360 (2004).

    MathSciNet  MATH  Google Scholar 

  29. www.idQuantique.com

  30. www.magiqtech.com

  31. www.smartquantum.com

  32. Townsend, P., Rarity, J. G. & Tapster, P. R. Single photon interference in a 10 km long optical fiber interferometer. Electron. Lett. 29, 634–639 (1993).

    Google Scholar 

  33. Muller, A., Zbinden H. & Gisin, N. Underwater quantum coding. Nature 378, 449 (1995).

    ADS  Google Scholar 

  34. Bourennane, M. et al. Experiments on long wavelength (1550nm) 'plug and play' quantum cryptography systems. Opt. Express 4, 383–387 (1999).

    ADS  Google Scholar 

  35. Hughes, R., Morgan, G. & Peterson, C. Quantum key distribution over a 48km optical fibre network. J. Mod. Opt. 47, 533–547 (2000).

    ADS  Google Scholar 

  36. Bethune, D. & Risk, W. An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light. IEEE J. Quantum Electron. 36, 340–347 (2000).

    ADS  Google Scholar 

  37. Stucki, D., Gisin, N., Guinnard, O., Ribordy, G. & Zbinden, H. Quantum key distribution over 67 km with a plug & play system. New J. Phys. 4, 41 (2002).

    ADS  Google Scholar 

  38. Inoue, K., Waks, E. & Yamamoto, Y. Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A 68, 022317 (2003).

    ADS  Google Scholar 

  39. Gobby, C., Yuan, Z. L. & Shields, A. J. Unconditionally secure quantum key distribution over 50km of standard telecom fibre. Electron. Lett. 40, 1603–1604 (2004).

    Google Scholar 

  40. Elliott, C. et al. Current status of the DARPA Quantum Network. Preprint at http://arxiv.org/abs/quant-ph/0503058 (2005).

  41. Stucki, D., Brunner, N., Gisin, N., Scarani, V. & Zbinden, H. Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 87, 194108 (2005).

    ADS  Google Scholar 

  42. Takesue, H. et al. Differential phase shift quantum key distribution experiment over 105 km fibre. New. J. Phys. 7, 232 (2005).

    ADS  Google Scholar 

  43. Thew, R. T. et al. Low jitter up-conversion detectors for telecom wavelength GHz QKD. New J. Phys. 8, 32 (2006).

    ADS  Google Scholar 

  44. Ribordy, G. et al. Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: Current performance. J. Mod. Opt. 51, 1381–1398 (2004).

    ADS  Google Scholar 

  45. Pellegrini, S. et al. Design and performance of an InGaAs-InP single-photon avalanche diode detector. IEEE J. Quant. Electron. 42, 397–403 (2006).

    ADS  Google Scholar 

  46. Langrock, C. et al. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett. 30, 1725–1727 (2005).

    ADS  Google Scholar 

  47. Gol'tsman, G. N. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705 (2001).

    ADS  Google Scholar 

  48. Miller, A. J., Nam, S. W., Martinis, J. M. & Sergienko, A. V. Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination. Appl. Phys. Lett. 83, 791–793 (2003).

    ADS  Google Scholar 

  49. Scarani, V., Acin, A., Ribordy, G. & Gisin, N. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulses implementations. Phys. Rev. Lett. 92, 057901 (2004).

    ADS  Google Scholar 

  50. Hwang, W.-Y. Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003).

    ADS  Google Scholar 

  51. Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

    ADS  Google Scholar 

  52. Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    ADS  Google Scholar 

  53. Harrington, J. W., Ettinger, J. M., Hugues, R. J. & Nordholt, J. R. Enhancing practical security of quantum key distribution with a few decoy states. Los Alamos report LA-UR-05–1156; preprint at http://arxiv.org/abs/quant-ph/0503002 (2005).

  54. Grosshan, F. & Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002).

    ADS  Google Scholar 

  55. Kraus, B., Gisin, N. & Renner, R. Lower and upper bounds on the secret key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005).

    ADS  Google Scholar 

  56. Shor, P. W. & Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000).

    ADS  Google Scholar 

  57. Cover, T. M & Thomas, J. A. Elements of Information Theory (Wiley, New York, 1991).

    MATH  Google Scholar 

  58. Csiszár, I. & Körner, J. Broadcast channels with confidential messages. IEEE Trans. Inf. Theor. IT-24, 339–348 (1978).

    MathSciNet  MATH  Google Scholar 

  59. Maurer, U. M. Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theor. 39, 733–742 (1993).

    MathSciNet  MATH  Google Scholar 

  60. Renner, R. & Wolf, S. in Proc. 2004 IEEE Int. Symp. Inf. Theor. 233 (ISIT, 2004).

  61. Makarov, V, Anisimov, A. & Skaar, J. Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006).

    ADS  Google Scholar 

  62. Gisin, N., Fasel, S., Kraus, B., Zbinden, H. & Ribordy, G. Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006).

    ADS  Google Scholar 

  63. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    ADS  Google Scholar 

  64. Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

    ADS  Google Scholar 

  65. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS  MATH  Google Scholar 

  66. Weinfurter, H. Experimental Bell-state analysis. Europhys. Lett. 25, 559 (1994).

    ADS  Google Scholar 

  67. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  68. Kim, Y.-H., Kulik, S. P. & Shih, Y. Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001).

    ADS  Google Scholar 

  69. Gisin, N. & Iblisdir, S. Quantum relative states. Euro. Phys. J. D 39, 321 (2006).

    ADS  MathSciNet  Google Scholar 

  70. Lütkenhaus, N., Calsamiglia, J. & Suominen, K. A. Bell measurements for teleportation. Phys. Rev. Lett. 59, 003295 (1999).

    ADS  MathSciNet  Google Scholar 

  71. Diamanti, E., Takesue, H., Langrock, C., Fejer, M. M. & Yamamoto, Y. 100 km secure differential phase shift quantum key distribution with low jitter up-conversion detectors. Opt. Exp. 14, 13073 (2006).

    ADS  Google Scholar 

  72. Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998).

    ADS  Google Scholar 

  73. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    ADS  Google Scholar 

  74. Schuck, C., Huber, G., Kurtsiefer, C. & Weinfurter, H. Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006).

    ADS  Google Scholar 

  75. Van Houwelingen, J., Brunner, N., Beveratos, B., Zbinden, H. & Gisin, N. Quantum teleportation with a three-Bell-state analyzer. Phys. Rev. Lett. 96, 130502 (2006).

    ADS  MathSciNet  Google Scholar 

  76. Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    ADS  Google Scholar 

  77. Jacobs, B. C., Pittman, T. B. & Franson, J. D. Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 052307 (2002).

    ADS  Google Scholar 

  78. Pan, J.-W., Bouwmeester, D. & Zeilinger, A. Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 80, 3891 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  79. Jennewein, T., Weihs, G., Pan, J.-W., Weinfurter, H. & Zeilinger, A. Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett. 88, 017903 (2002).

    ADS  Google Scholar 

  80. de Riedmatten, H. et al. Long-distance entanglement swapping with photons from separated sources. Phys. Rev. A 71, 05302 (2005).

    Google Scholar 

  81. Waks, E., Zeevi, A. & Yamamoto, Y. Security of quantum key distribution with entangled photons against individual attacks. Phys. Rev. A 65, 052310 (2002).

    ADS  Google Scholar 

  82. Collins, D., Gisin N. & de Riedmatten, H. Quantum relays for long distance quantum cryptography. J. Mod. Opt. 52, 735–753 (2005).

    ADS  MATH  Google Scholar 

  83. Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  Google Scholar 

  84. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  Google Scholar 

  85. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996).

    ADS  Google Scholar 

  86. Deutsch, D. et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 002818 (1996).

    Google Scholar 

  87. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurasek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482 (2004).

    ADS  Google Scholar 

  88. Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    ADS  Google Scholar 

  89. Chanelière, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005).

    ADS  Google Scholar 

  90. Eisaman, M. D. et al. Electromagnetically induced transparency with tunable single-photon pulses Nature 438, 837–841 (2005).

    ADS  Google Scholar 

  91. Volz, J. et al. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006).

    ADS  Google Scholar 

  92. Tamarat, P. et al. Stark shift control of single optical centers in diamond. Phys. Rev. Lett. 97, 083002 (2006).

    ADS  Google Scholar 

  93. Kraus, B. et al. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening. Phys. Rev. A 73, 020302R (2006).

    ADS  Google Scholar 

  94. Alexander, A. L., Longdell, J. J., Sellars, M. J. & Manson, N. B. Photon echoes produced by switching electric fields. Phys. Rev. Lett. 96, 043602 (2006).

    ADS  Google Scholar 

  95. http://www.qubitapplications.com

  96. http://:www.scala-ip.org

  97. http://www.qist.ect.it

  98. http://www.qist.lanl.gov

  99. Braunstein. S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    ADS  MathSciNet  MATH  Google Scholar 

  100. Myers, C. R. & Laflamme, R. Linear optics quantum computation: An overview. Preprint at http://arxiv.org/abs/quant-ph/0512104 (2005).

Download references

Acknowledgements

This work was supported by the EC under projects QAP (contract no. IST-015848) and SECOQC (contract no. IST-2002-506813) and by the Swiss NCCR Quantum Photonics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Gisin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gisin, N., Thew, R. Quantum communication. Nature Photon 1, 165–171 (2007). https://doi.org/10.1038/nphoton.2007.22

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing