Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Morpho butterfly wing scales demonstrate highly selective vapour response

Abstract

Tropical Morpho butterflies are famous for their brilliant iridescent colours, which arise from ordered arrays of scales on their wings. Here we show that the iridescent scales of the Morpho sulkowskyi butterfly give a different optical response to different individual vapours, and that this optical response dramatically outperforms that of existing nano-engineered photonic sensors. The reflectance spectra of the scales provide information about the nature and concentration of the vapours, allowing us to identify a range of closely related vapours–water, methanol, ethanol and isomers of dichloroethylene when they are analysed individually. By comparing the reflectance as a function of time for different vapours, we deduce that wing regions with scale structures of differing spatial periodicity give contributions to the overall spectral response at different wavelengths. Our optical model explains the effect of different components of the wing scales on the vapour response, and could steer the design of new man-made optical gas sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two views of the Morpho photonic structure.
Figure 2: New principle of highly selective vapour response based on hierarchical photonic structures and demonstrated using M. sulkowskyi iridescent scales.
Figure 3: Analysis of selectivity of spectral response of photonic structure of M. sulkowskyi to different vapours.
Figure 4: Evaluation of polarity of scales by nile-red staining.
Figure 5: Dynamic response of scales of M. sulkowskyi to different vapours at 385, 410, 460 and 555 nm.
Figure 6: Optical modelling of vapour response of M. sulkowskyi-like photonic structures.

Similar content being viewed by others

References

  1. Ghiradella, H. Hairs, bristles, and scales, in Microscopical Anatomy of Invertebrates (ed. Locke, M.) 257–287 (Wiley-Liss, New York, 1998).

    Google Scholar 

  2. Vukusic, P., Sambles, J. R. & Lawrence, C. R. Structural colour: Colour mixing in wing scales of a butterfly. Nature 404, 457 (2000).

    Article  ADS  Google Scholar 

  3. Srinivasarao, M. Nano-optics in the biological world: Beetles, butterflies, birds, and moths. Chem. Rev. 99, 1935–1961 (1999).

    Article  Google Scholar 

  4. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    Article  ADS  Google Scholar 

  5. Tabata, H. Structurally colored fibers and applications, in Structural Colors in Biological Systems. Principles and Applications (eds Kinoshita, S. & Yoshioka, S.) 297–308 (Osaka Univ. Press, Osaka, 2005).

    Google Scholar 

  6. Watanabe, K. et al. Optical measurement and fabrication from a morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition. J. Vac. Sci. Technol. B. 23, 570–574 (2005).

    Article  Google Scholar 

  7. Zhang, J. -Z., Gu, Z. -Z., Chen, H. -H., Fujishima, A. & Sato, O. Inverse Morpho butterfly: A new approach to photonic crystal. J. Nanosci. Nanotechnol. 6, 1173–1176 (2006).

    Article  Google Scholar 

  8. Huang, J., Wang, X. & Wang, Z. L. Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 6, 2325–2331 (2006).

    Article  ADS  Google Scholar 

  9. Vukusic, P., Sambles, J. R., Lawrence, C. R. & Wootton, R. J. Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. B 266, 1403–1411 (1999).

    Article  Google Scholar 

  10. Holtz, J. H. & Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997).

    Article  ADS  Google Scholar 

  11. Lin, V. S. -Y., Motesharei, K., Dancil, K.-P. S., Sailor, M. J. & Ghadiri, M. R. A porous silicon-based optical interferometric biosensor. Science 278, 840–843 (1997).

    Article  ADS  Google Scholar 

  12. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    Article  Google Scholar 

  13. Li, Y. Y. et al. Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299, 2045–2047 (2003).

    Article  ADS  Google Scholar 

  14. Wehrspohn, R. B. et al. Application of photonic crystals for gas detection and sensing, in Photonic Crystals (ed. Busch, K.) 238–246 (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  15. Benabid, F., Couny, F., Knight, J. C., Birks, T. A. & Russell, P. S. J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488–491 (2005).

    Article  ADS  Google Scholar 

  16. West, J. L. & Halas, N. J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285–292 (2003).

    Article  Google Scholar 

  17. Van Duyne, R. P. Molecular plasmonics. Science 306, 985–986 (2004).

    Article  Google Scholar 

  18. Amarie, D., Onuta, T. -D., Potyrailo, R. & Dragnea, B. Submicrometer cavity surface plasmon sensors. J. Phys. Chem. B. 109, 15515–15519 (2005).

    Article  Google Scholar 

  19. Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature 399, 766–769 (1999).

    Article  ADS  Google Scholar 

  20. Convertino, A., Capobianchi, A., Valentini, A. & Cirillo, E. N. M. A new approach to organic solvent detection: High-reflectivity Bragg reflectors based on a gold nanoparticle/Teflon-like composite material. Adv. Mater. 15, 1103–1105 (2003).

    Article  Google Scholar 

  21. Snow, P. A., Squire, E. K., Russell, P. S. J. & Canham, L. T. Vapor sensing using the optical properties of porous silicon Bragg mirrors. J. Appl. Phys. 86, 1781–1784 (1999).

    Article  ADS  Google Scholar 

  22. Gao, J., Gao, T. & Sailor, M. J. Porous-silicon vapor sensor based on laser interferometry. Appl. Phys. Lett. 77, 901–903 (2000).

    Article  ADS  Google Scholar 

  23. Gao, T., Gao, J. & Sailor, M. J. Tuning the response and stability of thin film mesoporous silicon vapor sensors by surface modification. Langmuir 18, 9953–9957 (2002).

    Article  Google Scholar 

  24. Potyrailo, R. A. Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools? Angew. Chem. Int. Edn 45, 702–723 (2006).

    Article  Google Scholar 

  25. Bailey, R. C. & Hupp, J. T. Large-scale resonance amplification of optical sensing of volatile compounds with chemoresponsive visible-region diffraction gratings. J. Am. Chem. Soc. 124, 6767–6774 (2002).

    Article  Google Scholar 

  26. Vincent, J. F. V. Deconstructing the design of a biological material. J. Theor. Biol. 236, 73–78 (2005).

    Article  Google Scholar 

  27. Kinoshita, S., Yoshioka, S., Fujii, Y. & Okamoto, N. Photophysics of structural color in the Morpho butterflies. Forma 17, 103–121 (2002).

    Google Scholar 

  28. Kinoshita, S. & Yoshioka, S. Photophysical approach to blue coloring in the Morpho butterflies, in Structural Colors in Biological Systems. Principles and Applications (eds Kinoshita, S. & Yoshioka, S.) 113–140 (Osaka Univ. Press, Osaka, 2005).

    Google Scholar 

  29. Gralak, B., Tayeb, G. & Enoch, S. Morpho butterflies wings color modeled with lamellar grating theory. Opt. Express 9, 567–578 (2001).

    Article  ADS  Google Scholar 

  30. Larkin, J. E., Frank, B. C., Gavras, H., Sultana, R. & Quackenbush, J. Independence and reproducibility across microarray platforms. Nature Methods 2, 337–344 (2005).

    Article  Google Scholar 

  31. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  32. Grate, J. W. Acoustic wave microsensor arrays for vapor sensing. Chem. Rev. 100, 2627–2648 (2000).

    Article  Google Scholar 

  33. Lewis, N. S. Comparisons between mammalian and artificial olfaction based on arrays of carbon black–polymer composite vapor detectors. Acc. Chem. Res. 37, 663–672 (2004).

    Article  Google Scholar 

  34. Schmidt, J., Kleffmann, T. & Schaub, G. A. Hydrophobic attachment of Trypanosoma cruzi to a superficial layer of the rectal cuticle in the bug Triatoma infestans. Parasitol. Res. 84, 527–536 (1998).

    Article  Google Scholar 

  35. Dickinson, T. A., White, J., Kauer, J. S. & Walt, D. R. A chemical-detecting system based on a cross-reactive optical sensor array. Nature 382, 697–700 (1996).

    Article  ADS  Google Scholar 

  36. Gu, Z. -Z. et al. Structural color and the lotus effect. Angew. Chem. Int. Edn 42, 894–897 (2003).

    Article  Google Scholar 

  37. Jin, R. et al. Photo-induced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

    Article  ADS  Google Scholar 

  38. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    Article  ADS  Google Scholar 

  39. Gregg, S. J. & Sing, K. S. W. Adsorption, Surface Area and Porosity (Academic Press, London, 1982).

    Google Scholar 

  40. Létant, S. E. & Sailor, M. J. Molecular identification by time-resolved interferometry in a porous silicon film. Adv. Mater. 5, 335–338 (2001).

    Article  Google Scholar 

  41. De Stefano, L., Moretti, L., Rendina, I. & Rossi, A. M. Quantitative optical sensing in two-component mixtures using porous silicon microcavities. Phys. Stat. Sol. A 5, 1011–1016 (2004).

    Article  ADS  Google Scholar 

  42. Hsieh, M. -D. & Zellers, E. T. Limits of recognition for simple vapor mixtures determined with a microsensor array. Anal. Chem. 76, 1885–1895 (2004).

    Article  Google Scholar 

  43. Ray, N. H. Gas chromatography. Nature 180, 403–405 (1957).

    Article  ADS  Google Scholar 

  44. Grate, J. W., Rose-Pehrsson, S. L., Venezky, D. L., Klusty, M. & Wohltjen, H. Smart sensor system for trace organophosphorus and organosulfur vapor detection employing a temperature-controlled array of surface acoustic wave sensors, automated sample preconcentration, and pattern recognition. Anal. Chem. 65, 1868–1881 (1993).

    Article  Google Scholar 

  45. Wong, T. -H., Gupta, M. C., Robins, B. & Levendusky, T. L. Color generation in butterfly wings and fabrication of such structures. Opt. Lett. 28, 2342–2344 (2003).

    Article  ADS  Google Scholar 

  46. Watanabe, K., Hoshino, T., Kanda, K., Haruyama, Y. & Matsui, S. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn J. Appl. Phys. 44, L48–L50 (2005).

    Article  ADS  Google Scholar 

  47. Zhang, W. et al. Fabrication of ZnO microtubes with adjustable nanopores on the walls by the templating of butterfly wing scales. Nanotechnology 17, 840–844 (2006).

    Article  ADS  Google Scholar 

  48. Potyrailo, R. A. & Pickett, J. E. High-throughput multilevel performance screening of advanced materials. Angew. Chem. Int. Edn 41, 4230–4233 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks go to T. Leib, A. Linsebigler and E.A. Williams for encouragement, to P. Jiang, I. Lednev, S. Ostrowski, V. Smentkowski, D. Stavenga, P. Vukusic and S. Yoshioka for helpful comments, and to R. Oudt for help with graphics. This work has been supported in part from General Electric's fundamental research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radislav A. Potyrailo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information; Figures S1 and S2 (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potyrailo, R., Ghiradella, H., Vertiatchikh, A. et al. Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photon 1, 123–128 (2007). https://doi.org/10.1038/nphoton.2007.2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing