Attosecond nanoplasmonic-field microscope


Nanoplasmonics deals with collective electronic dynamics on the surface of metal nanostructures, which arises as a result of excitations called surface plasmons. This field, which has recently undergone rapid growth, could benefit applications such as computing and information storage on the nanoscale, the ultrasensitive detection and spectroscopy of physical, chemical and biological nanosized objects, and the development of optoelectronic devices. Because of their broad spectral bandwidth, surface plasmons undergo ultrafast dynamics with timescales as short as a few hundred attoseconds. So far, the spatiotemporal dynamics of optical fields localized on the nanoscale has been hidden from direct access in the real space and time domain. Here, we propose an approach that will, for the first time, provide direct, non-invasive access to the nanoplasmonic collective dynamics, with nanometre-scale spatial resolution and temporal resolution on the order of 100 attoseconds. The method, which combines photoelectron emission microscopy and attosecond streaking spectroscopy, offers a valuable way of probing nanolocalized optical fields that will be interesting both from a fundamental point of view and in light of the existing and potential applications of nanoplasmonics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of the system and photoprocesses.
Figure 2: Excitation field and kinetics of the local field at a hot spot.
Figure 3: Topography of a nanosystem and spatiotemporal kinetics of the local field potential as detected by the attosecond plasmonic-field microscope.
Figure 4: Energy shift of electrons emitted from the surface of silver nanoshells as a function of the azimuthal angle θ of the emission point and the phase ϕ of the delay between the driving optical radiation and the probing attosecond XUV pulse.


  1. 1

    Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    ADS  Article  Google Scholar 

  2. 2

    Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    ADS  Article  Google Scholar 

  3. 3

    Niikura, H. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002).

    ADS  Article  Google Scholar 

  4. 4

    Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    ADS  Article  Google Scholar 

  5. 5

    Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    ADS  Article  Google Scholar 

  6. 6

    Niikura, H. et al. Probing molecular dynamics with attosecond resolution using correlated wave packet pairs. Nature 421, 826–829 (2003).

    ADS  Article  Google Scholar 

  7. 7

    Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    ADS  Article  Google Scholar 

  8. 8

    Sekikawa, T., Kosuge, A., Kanai, T. & Watanabe, S. Nonlinear optics in the extreme ultraviolet. Nature 432, 605–608 (2004).

    ADS  Article  Google Scholar 

  9. 9

    Lopez-Martens, R. et al. Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett. 94, 033001 (2005).

    ADS  Article  Google Scholar 

  10. 10

    Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    ADS  Article  Google Scholar 

  11. 11

    Dudovich, N. et al. Measuring and controlling the birth of attosecond XUV pulses. Nature Phys. 2, 781–786 (2006).

    ADS  Article  Google Scholar 

  12. 12

    Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    ADS  Article  Google Scholar 

  13. 13

    Kling, M. F. et al. Control of electron localization in molecular dissociation. Science 312, 246–248 (2006).

    ADS  Article  Google Scholar 

  14. 14

    Stockman, M. I., Faleev, S. V. & Bergman, D. J. Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics? Phys. Rev. Lett. 87, 167401 (2001).

    ADS  Article  Google Scholar 

  15. 15

    Stockman, M. I., Faleev, S. V. & Bergman, D. J. Coherent control of femtosecond energy localization in nanosystems. Phys. Rev. Lett. 88, 067402 (2002).

    ADS  Article  Google Scholar 

  16. 16

    Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    ADS  Article  Google Scholar 

  17. 17

    Lehmann, J. et al. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys. Rev. Lett. 85, 2921–2924 (2000).

    ADS  Article  Google Scholar 

  18. 18

    Zentgraf, T., Christ, A., Kuhl, J. & Giessen, H. Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals. Phys. Rev. Lett. 93, 243901 (2004).

    ADS  Article  Google Scholar 

  19. 19

    Kubo, A. et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 5, 1123–1127 (2005).

    ADS  Article  Google Scholar 

  20. 20

    Stockman, M. I. & Hewageegana, P. Nanolocalized nonlinear electron photoemission under coherent control. Nano Lett. 5, 2325–2329 (2005).

    ADS  Article  Google Scholar 

  21. 21

    Brixner, T. et al. Quantum control by ultrafast polarization shaping. Phys. Rev. Lett. 92, 208301 (2004).

    ADS  Article  Google Scholar 

  22. 22

    Brixner, T., d. Abajo, F. J. G., Schneider, J. & Pfeiffer, W. Nanoscopic ultrafast space–time-resolved spectroscopy. Phys. Rev. Lett. 95, 093901 (2005).

  23. 23

    Sukharev, M. & Seideman, T. Phase and polarization control as a route to plasmonic nanodevices. Nano Lett. 6, 715–719 (2006).

    ADS  Article  Google Scholar 

  24. 24

    Aeschlimann, M. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007).

    ADS  Article  Google Scholar 

  25. 25

    Pelton, M., Liu, M. Z., Park, S., Scherer, N. F. & Guyot-Sionnest, P. Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation. Phys. Rev. B 73, 155419 (2006).

  26. 26

    Corkum, P. B. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007).

    ADS  Article  Google Scholar 

  27. 27

    Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

    ADS  Article  Google Scholar 

  28. 28

    Schultze, M. et al. Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics. New J. Phys. 9, 243 (2007).

    ADS  Article  Google Scholar 

  29. 29

    Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001).

    ADS  Article  Google Scholar 

  30. 30

    Kupersztych, J., Monchicourt, P. & Raynaud, M. Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission. Phys. Rev. Lett. 86, 5180–5183 (2001).

    ADS  Article  Google Scholar 

  31. 31

    Kupersztych, J. & Raynaud, M. Anomalous multiphoton photoelectric effect in ultrashort time scales. Phys. Rev. Lett. 95, 147401 (2005).

  32. 32

    Johnson, P. B. & Christy, R. W. Optical constants of noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    ADS  Article  Google Scholar 

  33. 33

    Stockman, M. I., Bergman, D. J. & Kobayashi, T. Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems. Phys. Rev. B 69, 054202–10 (2004).

    ADS  Article  Google Scholar 

  34. 34

    Nehl, C. L. et al. Scattering spectra of single gold nanoshells. Nano Lett. 4, 2355–2359 (2004).

    ADS  Article  Google Scholar 

  35. 35

    Goulielmakis, E. et al. Attosecond control and measurement: Lightwave electronics. Science (in the press).

  36. 36

    Schnurer, M. et al. Guiding and high-harmonic generation of sub-10-fs pulses in hollow-core fibers at 10(15) w/cm2. Appl. Phys. B 67, 263–266 (1998).

    ADS  Article  Google Scholar 

  37. 37

    Henke, B. L., Lee, P., Tanaka, T. J., Shimabukuro, R. L. & Fujikawa, B. K. Low-energy X-ray interaction coefficients: Photoabsorption, scattering, and reflection. Atomic Data and Nuclear Data Tables 27, 1–131 (1982).

    ADS  Article  Google Scholar 

  38. 38

    Manson, S. T. in Photoemission in Solids Vol. 1, (eds Cardona, M. & Ley, L.) 135–163 (Springer, Berlin, New York, 1978).

    Google Scholar 

  39. 39

    Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. ii. Data for 27 elements over the 50–2000 eV range. Surf. Interface Anal. 17, 911–926 (1991).

    Article  Google Scholar 

Download references


The work of M.I.S. is supported by grants from the Chemical Sciences, Biosciences and Geosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy, a grant CHE-0507147 from NSF, and a grant from the US-Israel BSF. M.I.S.'s work at the Max-Planck-Institute for Quantum Optics (Garching, Germany) was supported by a Research Stipend of the Max Planck Society. The work of M.F.K., U.K., and F.K. was partially supported by the German Science Foundation (DFG) through the Cluster of Excellence Munich Center for Advanced Photonics. M.F.K. acknowledges support by an EU reintegration grant and the DFG Emmy–Noether program. MIS acknowledges helpful discussions with S. Manson regarding photoelectron cross-sections and with P. Corkum regarding charging of the surfaces.

Author information



Corresponding authors

Correspondence to Mark I. Stockman or Ferenc Krausz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Experimental steps, figure and movie legend (PDF 1047 kb)

Supplementary Information

Supplementary movie (MOV 1294 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stockman, M., Kling, M., Kleineberg, U. et al. Attosecond nanoplasmonic-field microscope. Nature Photon 1, 539–544 (2007).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing