Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical arbitrary waveform processing of more than 100 spectral comb lines


Pulse-shaping techniques, in which user-specified, ultrashort-pulse fields are synthesized by means of parallel manipulation of optical Fourier components, have now been widely adopted1,2,3,4,5,6. Mode-locked lasers producing combs of frequency-stabilized spectral lines have resulted in revolutionary advances in frequency metrology7,8,9,10,11. However, until recently, pulse shapers addressed spectral lines in groups, at low spectral resolution. Line-by-line pulse shaping12, in which spectral lines are resolved and manipulated individually, leads to a fundamentally new regime for optical arbitrary waveform generation13, in which the advantages of pulse shaping and of frequency combs are exploited simultaneously. Here we demonstrate programmable line-by-line shaping of more than 100 spectral lines, which constitutes a significant step in scaling towards high waveform complexity. Optical arbitrary waveform generation promises to have an impact both in optical science (allowing, for example, coherent control generalizations of comb-based time–frequency spectroscopies10) and in technology (enabling new truly coherent multiwavelength processing concepts for spread-spectrum lightwave communications and light detection and ranging, lidar).

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set up and high-rate ultrashort pulse generation.
Figure 2: Generation of over 1,000 stable spectral lines starting from one single line.
Figure 3: Spectral line-by-line shaping of 108 lines: spectral intensity control.
Figure 4: Spectral line-by-line shaping of 108 lines: spectral phase control.
Figure 5: Line-by-line shaping of 108 lines: complex O-AWG.


  1. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instr. 71, 1929–1960 (2000).

    Article  ADS  Google Scholar 

  2. Weiner, A. M., Leaird, D. E., Wiederrecht, G. P. & Nelson, K. A. Femtosecond pulse sequences used for optical manipulation of molecular-motion. Science 247, 1317–1319 (1990).

    Article  ADS  Google Scholar 

  3. Dudovich, N., Oron, D. & Silberberg, Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512–514 (2002).

    Article  ADS  Google Scholar 

  4. Brixner, T., Damrauer, N. H., Niklaus, P. & Gerber, G. Photoselective adaptive femtosecond quantum control in the liquid phase. Nature 414, 57–60 (2001).

    Article  ADS  Google Scholar 

  5. Levis, R. J., Menkir, G. M. & Rabitz, H. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292, 709–713 (2001).

    Article  ADS  Google Scholar 

  6. Bartels, R. et al. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature 406, 164–166 (2000).

    Article  ADS  Google Scholar 

  7. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  8. Udem, T., Holzwarth, R. & Hansch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  9. Ma, L. S. et al. Optical frequency synthesis and comparison with uncertainty at the 10–19 level. Science 303, 1843–1845 (2004).

    Article  ADS  Google Scholar 

  10. Marian, A., Stowe, M. C., Lawall, J. R., Felint, D. & Ye, J. United time–frequency spectroscopy for dynamics and global structure. Science 306, 2063–2068 (2004).

    Article  ADS  Google Scholar 

  11. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Article  Google Scholar 

  12. Jiang, Z., Seo, D. S., Leaird, D. E. & Weiner, A. M. Spectral line-by-line pulse shaping. Opt. Lett. 30, 1557–1559 (2005).

    Article  ADS  Google Scholar 

  13. Jiang, Z., Leaird, D. E. & Weiner, A. M. Line-by-line pulse shaping control for optical arbitrary waveform generation. Opt. Express 13, 10431–10439 (2005).

    Article  ADS  Google Scholar 

  14. Stowe, M. C., Cruz, F. C., Marian, A. & Ye, J. High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb. Phys. Rev. Lett. 96, 153001 (2006).

    Article  ADS  Google Scholar 

  15. Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    Article  ADS  Google Scholar 

  16. Proakis, J. G. Digital Communications 3rd edn (McGraw-Hill, New York, 1995).

  17. Jiang, Z. et al. Four user, 2.5 Gb/s, spectrally coded O-CDMA system demonstration using low power nonlinear processing. J. Lightwave Technol. 23, 143–158 (2005).

    Article  ADS  Google Scholar 

  18. Lee, W., Izadpanah, H., Delfyett, P. J., Menendez, R. & Etemad, S. Coherent pulse detection and multi-channel coherent detection based on a single balanced homodyne receiver. Opt. Express 15, 2098–2105 (2007).

    Article  ADS  Google Scholar 

  19. Swann, W. C. & Newbury, N. R. Frequency-resolved coherent lidar using a femtosecond fiber laser. Opt. Lett. 31, 826–828 (2006).

    Article  ADS  Google Scholar 

  20. Miyamoto, D. et al. Waveform-controllable optical pulse generation using an optical pulse synthesizer. IEEE Photon. Technol. Lett. 18, 721–723 (2006).

    Article  ADS  Google Scholar 

  21. Takiguchi, K., Okamoto, K., Kominato, I., Takahashi, H. & Shibata, T. Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit. Electron. Lett. 40, 537–538 (2004).

    Article  Google Scholar 

  22. Cundiff, S. T. Phase stabilization of ultrashort optical pulses. J. Phys. D 35, R43–R59 (2002).

    Article  ADS  Google Scholar 

  23. Gee, S., Quinlan, F., Ozharar, S. & Delfyett, P. J. Simultaneous optical comb frequency stabilization and super-mode noise suppression of harmonically mode-locked semiconductor ring laser using an intracavity etalon. IEEE Photon. Technol. Lett. 17, 199–201 (2005).

    Article  ADS  Google Scholar 

  24. Yoshida, M., Yaguchi, T., Harada, S. & Nakazawa, M. A 40 GHz regeneratively and harmonically mode-locked erbium-doped fiber laser and its longitudinal-mode characteristics. IEICE Trans. Electron. E87C, 1166–1172 (2004).

    Google Scholar 

  25. Murata, H., Morimoto, A., Kobayashi, T. & Yamamoto, S. Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators. IEEE J. Sel. Top. Quant. Electron. 6, 1325–1331 (2000).

    Article  ADS  Google Scholar 

  26. Hisatake, S., Nakase, Y., Shibuya, K. & Kobayashi, T. Generation of flat power-envelope terahertz-wide modulation sidebands from a continuous-wave laser based on an external electro-optic phase modulator. Opt. Lett. 30, 777–779 (2005).

    Article  ADS  Google Scholar 

  27. Imai, K., Kourogi, M. & Ohtsu, M. 30-THz span optical frequency comb generation by self-phase modulation in an optical fiber. IEEE J. Quant. Electron. 34, 54–60 (1998).

    Article  ADS  Google Scholar 

  28. Huang, C.-B., Jiang, Z., Leaird, D. E. & Weiner, A. M. High-rate femtosecond pulse generation via line-by-line processing of a phase-modulated CW laser frequency comb. Electron. Lett. 42, 1114–1115 (2006).

    Article  Google Scholar 

  29. Weiner, A. M., Leaird, D. E., Patel, J. S. & Wullert, J. R. Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator. IEEE J. Quant. Electron. 28, 908–920 (1992).

    Article  ADS  Google Scholar 

  30. Wang, S. X., Xiao, S. & Weiner, A. M. Broadband, high spectral resolution 2-D wavelength-parallel polarimeter for dense WDM systems. Opt. Express 13, 9374–9380 (2005).

    Article  ADS  Google Scholar 

Download references


This work was supported by the Defense Advanced Research Projects Agency/Air Force Office of Scientific Research under Grant FA9550-06-1-0189 and by the National Science Foundation under Grant ECCS-0601692.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Andrew M. Weiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, Z., Huang, CB., Leaird, D. et al. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photon 1, 463–467 (2007).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing