Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wavelength-scale stationary-wave integrated Fourier-transform spectrometry


Spectrometry is a general physical-analysis approach for investigating light–matter interactions. However, the complex designs of existing spectrometers render them resistant to simplification and miniaturization, both of which are vital for applications in micro- and nanotechnology and which are now undergoing intensive research. Stationary-wave integrated Fourier-transform spectrometry (SWIFTS)—an approach based on direct intensity detection of a standing wave resulting from either reflection (as in the principle of colour photography by Gabriel Lippmann) or counterpropagative interference phenomenon—is expected to be able to overcome this drawback. Here, we present a SWIFTS-based spectrometer relying on an original optical near-field detection method in which optical nanoprobes are used to sample directly the evanescent standing wave in the waveguide. Combined with integrated optics, we report a way of reducing the volume of the spectrometer to a few hundreds of cubic wavelengths. This is the first attempt, using SWIFTS, to produce a very small integrated one-dimensional spectrometer suitable for applications where microspectrometers are essential.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stationary-wave integrated Fourier-transform spectrometry.
Figure 2: s-SNOM observation of an interferogram in a waveguiding structure.
Figure 3: Nanowire structures.
Figure 4: Monochromatic illumination.
Figure 5: Polychromatic illumination.


  1. Lippmann, G. La photographie des couleurs. CRAS (Paris) 112, 274–275 (1891).

    Google Scholar 

  2. Lippmann, G. Sur la théorie de la photographie des couleurs simples et composées, par la méthode interférentielle. CRAS (Paris) 118, 92–102 (1894).

    MATH  Google Scholar 

  3. Rommeluere, S. et al. Microspectrometer on a chip (MICROSPOC): first demonstration on a 320 × 240 LWIR HgCdTe focal plane array. Proc. SPIE 5406, 170–177 (2004).

    Article  ADS  Google Scholar 

  4. Wolffenbuttel, R. F. MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range. J. Micromech. Microeng. 15, S145–S152 (2005).

    Article  Google Scholar 

  5. Bland-Hawthorn, J. & Horton, A. Instruments without optics: an integrated photonic spectrograph, ground-based and airborne instrumentation for astronomy. Proc. SPIE 6269, 62690N (2006).

    Article  ADS  Google Scholar 

  6. Froggatt, M. & Erdogan, T. All fiber wavemeter and Fourier-transform spectrometer. Opt. Lett. 24, 942–944 (1999).

    Article  ADS  Google Scholar 

  7. Ives, H. E. Standing light waves, repetition of an experiment by Wiener, using a photoelectric probe surface. J. Opt. Soc. Am. 23, 73–83 (1933).

    Article  ADS  Google Scholar 

  8. Connes, P. & Le Coarer, E. 3-D spectroscopy: The historical and logical viewpoint. IAU Colloquium N 149, Marseille, 22–25 March, 38–49 (1994).

    Google Scholar 

  9. Knipp, D. et al. Silicon-based micro-Fourier spectrometer. IEEE Trans. Electron. Devices 52, 419–426 (2005).

    Article  ADS  Google Scholar 

  10. Labeyrie, A., Huignard, J. P. & Loiseaux, B. Optical data storage in microfibers. Opt. Lett. 23, 301–303 (1998).

    Article  ADS  Google Scholar 

  11. Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    Article  ADS  Google Scholar 

  12. Denisyuk, Y. N. On the reproduction of the optical properties of an object by the wave field of its scattered radiation. Opt. Spectrosk. 15, 279–284 (1963).

    Google Scholar 

  13. Sagnac, G. Sur la preuve de la realité de l'éther lumineux par l'expérience de l'interférographe tournant. CRAS (Paris) 157, 708–710, 1410–1413 (1913).

    Google Scholar 

  14. Stefanon, I. et al. Heterodyne detection of guided waves using a scattering-type optical near-field microscope. Opt. Express 13, 5554–5564 (2005).

    Article  ADS  Google Scholar 

  15. Bruyant, A. et al. Local complex reflectivity in optical waveguides. Phys. Rev. B 74, 075414-1 (2006).

    Article  ADS  Google Scholar 

  16. Lyons, R. G. Understanding Digital Signal Processing: Periodic Sampling (Prentice Hall PTR, Upper Saddle River, New Jersey, 2004).

    Google Scholar 

  17. Stroke G. W. & Funkhouser, A. T. Fourier-transform spectroscopy using holographic imaging without computing and with stationary interferometers. Phys. Lett. 16, 272–274 (1965).

    Article  ADS  Google Scholar 

  18. Junttila, M. L., Kauppinen, J. & Ikonen, E. Performance limits of stationary Fourier spectrometers. J. Opt. Soc. Am. A 8, 1457–1462 (1991).

    Article  ADS  Google Scholar 

  19. Kadin, A. M. & Johnson, M. W. Nonequilibrium photon-induced hotspot: A new mechanism for photodetection in ultrathin metallic films. Appl. Phys. Lett. 69, 3938–3940 (1996).

    Article  ADS  Google Scholar 

Download references


The authors thank S. Kostcheev for the electron-beam patterning of the scattering at the waveguide surface, A. Chalabaev and A. Bruyant for fruitful discussions, and G. Duvert for the SWIFTS's acronym.

This work was partially supported by the Centre National des Etudes Spatiales (CNES) and the Région Champagne Ardennes, and is part of the strategic research programme on ‘Optical standing waves spectrometers and sensors’ of the Université de Technologie de Troyes (UTT).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Etienne le Coarer or Sylvain Blaize.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, equations and supplementary figure 1 (PDF 231 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

le Coarer, E., Blaize, S., Benech, P. et al. Wavelength-scale stationary-wave integrated Fourier-transform spectrometry. Nature Photon 1, 473–478 (2007).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing