Abstract
The realization of miniaturized optofluidic platforms offers potential for achieving more functional and more compact devices. Such integrated systems bring fluid and light together and exploit their microscale interaction for a large variety of applications. The high sensitivity of compact microphotonic devices can generate effective microfluidic sensors, with integration capabilities. By turning the technology around, the exploitation of fluid properties holds the promise of highly flexible, tunable or reconfigurable microphotonic devices. We overview some of the exciting developments so far.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Verpoorte, E. Chip vision-optics for microchips. Lab Chip 3, 42N–52N (2003).
Mogensen, K. B., Henning, K. & Kutter, J. P. Recent developments in detection for microfluidic systems. Electrophoresis 25, 3498–3512 (2004).
Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).
Kuiper, S. & Hendriks, B. H. W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128–1130 (2004).
Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006).
Heng, X. et al. Optofluidic microscopy–a method for implementing a high resolution optical microscope on a chip. Lab Chip 6, 1274–1276 (2006).
Krauss, T. F., De La Rue, R. M. & Brand, S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996).
Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E. & Ryu, H. Y. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004).
Eggleton, B. J., Kerbage, C., Westbrook, P. S., Windeler, R. S. & Hale, A. Microstructured optical fiber devices. Opt. Express 9, 698–713 (2001).
Russel, P. Photonic crystal fibers. Science 299, 358–362 (2003).
Nguyen, H. C. et al. Tapered photonic crystal fibres: properties, characterization and applications. Appl. Phys. B 81, 377–387 (2005).
Reyes, D. R., Lossifidis, D., Auroux, P. A. & Manz, A. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74, 2623–2636 (2002).
Auroux, P. A., Lossifidis, D., Reyes, D. R. & Manz, A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74, 2637–2652 (2002).
Erickson, D. & Li, D. Integrated microfluidic devices. Anal. Chim. Acta 507, 11–26 (2004).
Chabinyc, M. L. et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal. Chem. 73, 4491–4498 (2001).
Adams, M. L., Enzelberger, M., Quake, S. & Scherer, A. Microfluidic integration on detector arrays for absorption and fluorescence micro-spectrometers. Sens. Actuat. A 104, 25–31 (2003).
Misiakos, K., Kakabakos, S. E., Petrou, P. S. & Ruf, H. H. A monolithic silicon optoelectronic transducer as a real-time affinity biosensor. Anal. Chem. 76, 1366–1373 (2004).
Shin, K. S. et al. Characterization of an integrated fluorescence-detection hybrid device with photodiode and organic light-emitting diode. IEEE Electron. Dev. Lett. 27, 746–748 (2006).
Ng, J. M. K., Gitlin, I., Stroock, A. D. & Whitesides, G. M. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23, 3461–3473 (2002).
Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).
Chronis, N., Liu, G. L., Jeong, K.-H. & Lee, L. P. Tunable liquid-filled microlens array integrated with microfluidic network. Opt. Express 11, 2370–2378 (2003).
Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).
Quake, S. R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).
Husband, B., Bu, M., Evans, A. G. R. & Melvin, T. Investigation for the operation of an integrated peristaltic micropump. J. Micromech. Microeng. 14, S64–S69 (2004).
Stroock, A. D. et al. Chaotic mixer for microchannels. Science 295, 647–651 (2002).
Groisman, A., Enzelberger, M. & Quake, S. R. Microfluidic memory and control devices. Science 300, 955–958 (2003).
Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. Science 298, 580–584 (2002).
Hong, J. W. & Quake, S. R. Integrated nanoliter systems. Nature Biotechnol. 21, 1179–1183 (2003).
Hong, J. W., Studer, V., Hang, G., Anderson, W. F. & Quake, S. R. A nanoliter scale nucleic acid processor with parallel architecture. Nature Biotechnol. 22, 435–439 (2004).
Galas, J. C., Torres, J., Belotti, M., Kou, Q. & Chen, Y. Microfluidic tunable dye laser with integrated mixer and ring resonator. Appl. Phys. Lett. 86, 264101 (2005).
Erickson, D., Rockwood, T., Emery, T., Scherer, A. & Psaltis, D. Nanofluidic tuning of photonic crystal circuits. Opt. Lett. 31, 59–61 (2006).
Levy, U., Campbell, K., Groisman, A., Mookherjea, S. & Fainman, Y. On chip microfluidic tuning of an optical microring resonator. Appl. Phys. Lett. 88, 111107 (2006).
Helbo, B., Kristensen, A. & Menon, A. A micro-cavity fluidic dye laser. J. Micromech. Microeng. 13, 307–311 (2003).
Kou, Q., Yesilyurt, I. & Chen, Y. Collinear dual-color laser emission from a microfluidic dye laser. Appl. Phys. Lett. 88, 091101 (2006).
Gersborg-Hansen, M., Balslev, S., Mortensen, N. A. & Kristensen, A. A coupled cavity micro-fluidic dye ring laser. Microelec. Eng. 78–79, 185–189 (2005).
Balslev, S. & Kristensen, A. Microfluidic single mode laser using high order Bragg grating and antiguiding segments. Opt. Express 13, 344–351 (2005).
Li, Z., Zhang, Z., Scherer, A. & Psaltis, D. Mechanically tunable optofluidic distributed feedback dye laser. Opt. Express 14, 10494–10499 (2006).
Vezenov, D. V., Mayers, B. T., Wolfe, D. B. & Whitesides, G. M. Integrated fluorescent light source for optofluidic applications. Appl. Phys. Lett. 86, 041104 (2005).
Nilsson, D., Balslev, S. & Kristensen, A. A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclo-olefin copolymer (COC). J. Micromech. Microeng. 15, 296–300 (2005).
Cheng, Y., Sugioka, K. & Midorikawa, K. Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt. Lett. 29, 2007–2009 (2004).
Vezenov, D. V. et al. A low threshold high efficiency microfluidic waveguide laser. J. Am. Chem. Soc. 127, 8952–8953 (2005).
Mayers, B. T., Vezenov, D. V., Vullev, V. I. & Whitesides, G. M. Arrays and cascades of fluorescent liquid-liquid-waveguides. Anal. Chem. 77, 1310–1316 (2005).
Trindade, T., O'Brien, P. & Pickett, N. L. Nanocrystalline semiconductors: Synthesis, properties and perspectives. Chem. Mater. 13, 3843–3858 (2001).
Medintz, I. L., Tetsuo, H., Goldman, U. E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).
Bilenberg, B., Rasmussen, T., Balslev, S. & Kristensen, A. Real time tunability of chip based light source enabled by microfluidic mixing. J. Appl. Phys. 99, 023102 (2006).
Balslev, S. et al. Lab on a chip with integrated optical transducers. Lab Chip 6, 213–217 (2005).
Potyrailo, R. A., Hobbs, S. E. & Hieftje, G. M. Optical waveguide sensors in analytical chemistry: Today's instrumentation, applications and trends for future development. Fresenius J. Anal. Chem. 362, 349–373 (1998).
Duveneck, G. L., Abel, A. P., Bopp, M. A., Kresbach, G. M. & Ehrat, M. Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids. Anal. Chim. Acta 469, 49–61 (2002).
Hubner, J. et al. Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels. Rev. Sci. Instr. 72, 229–233 (2001).
Hofmann, O., Voirin, G., Niedermann, P. & Manz, A. Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces. Application to immunoassays on planar optical waveguides. Anal. Chem. 74, 5243–5250 (2002).
Yin, D., Deamer, D. W., Schmidt, H., Barber, J. P. & Hawkins, A. Single-molecule detection sensitivity using planar integrated optics on a chip. Opt. Lett. 31, 2136–2138 (2006).
Mogensen, K. B., Petersen, N. J., Hubner, J. & Kutter, J. P. Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices. Electrophoresis 22, 3930–3938 (2001).
Ro, K. W., Lim, K., Shim, B. C. & Hahn, J. H. Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis. Anal. Chem. 77, 5160–5166 (2005).
Ksendzov, A. & Lin, Y. Integrated optics ring resonator sensors for protein detection. Opt. Lett. 30, 3344–3346 (2005).
Heideman, R. G. & Lambeck, P. V. Remote opto-chemical sensing with extreme sensitivity: Design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sens. Actuators B Chem. 61, 100–127 (1999).
Dumais, P., Callender, C. L., Noad, J. P. & Ledderhof, C. J. Silica on slicon optical sensor based on integrated waveguides and microchannels. IEEE Photon. Technol. Lett. 17, 441–443 (2005).
Schmidt, H., Yin, D., Barber, J. P. & Hawkins, A. R. Hollow-core waveguides and 2-D waveguides arrays for integrated optics of gases and liquids. IEEE J. Sel. Top. Quant. Electron. 11, 519–527 (2005).
Campopiano, S., Bernini, R., Zeni, L. & Sarro, P. M. Microfluidic sensor based on integrated optical hollow waveguides. Opt. Lett. 29, 1894–1896 (2004).
Homola, J., Yee, S. S. & Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuat. B 54, 3–15 (1999).
Dostalek, J. et al. Surface plasmon resonance biosensor based on integrated optical waveguide. Sens. Actuat. B 76, 8–12 (2001).
Blair, S. & Chen, Y. Resonant enhanced evanescent wave fluorescence biosensing with cylindrical optical cavities. Appl. Opt. 40, 570–582 (2001).
Krioukov, E., Klunder, D. J. W., Driessen, A., Greve, J. & Otto, C. Integrated optical microcavities for enhanced evanescent wave spectroscopy. Opt. Lett. 27, 1504–1506 (2002).
Boyd, R. W. & Heebner, J. E. Sensitive disk resonator photonic biosensor. Appl. Opt. 40, 5742–5747 (2001).
Krioukov, E., Greve, J. & Otto, C. Performance of integrated optical microcavities for refractive index and fluorescence sensing. Sens. Actuat. B 90, 58–67 (2003).
Niehusmann, J. et al. Ultrahigh-quality-factor silicon-on-insulator microring resonator. Opt. Lett. 29, 2861–2863 (2004).
Kippenberg, T. J., Spillane, S. M., Armani, D. K. & Vahala, K. J. Fabrication and coupling to planar high-Q silica disk microcavities. Appl. Phys. Lett. 83, 797–799 (2003).
Song, B. S., Noda, S., Asano, T. & Akahane Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005).
Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).
Armani, A. M. & Vahala, K. J. Heavy water detection using ultra high Q microcavities. Opt. Lett. 31, 1896–1898 (2006).
Krioukov, E., Klunder, D. J. W., Driessen, A., Greve, J. & Otto, C. Sensor based on an integrated optical microcavity. Opt. Lett. 27, 512–514 (2002).
Chao, C. Y., Fung, W. & Guo, L. J. Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Top. Quant. Electron. 12, 134–142 (2006).
Yang, J. & Guo, L. J. Optical sensors based on active microcavities. IEEE J. Sel. Top. Quant. Electron. 12, 143–147 (2006).
Fan, S. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett. 80, 908–910 (2002).
Chao, C. Y. & Guo, L. J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 83, 1527–1529 (2003).
Cusano, A., Iadicicco, A., Campopiano, S., Giordano, M. & Cutolo, A. Thinned and micro-structured fibre Bragg gratings: Towards new all-fibre high-sensitivitiy chemical sensors. J. Opt. A 7, 734–741 (2005).
Liang, W., Huang, Y., Xu, Y., Lee, R. K. & Yariv, A. Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 86, 151122 (2005).
Hopman, W. C. L. et al. Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors. IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
Domachuk, P., Littler, I. C. M., Cronin-Golomb, M. & Eggleton, B. J. Compact resonant integrated microfluidic refractometer. Appl. Phys. Lett. 88, 093513 (2006).
Loncar, M., Scherer, A. & Qiu, Y. Photonic crystal laser sources for chemical detection. Appl. Phys. Lett. 82, 4648–4650 (2003).
Chow, E., Grot, A., Mirkarimi, W. L., Sigalas, M. & Girolami, G. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 29, 1093–1095 (2004).
Adams, M. L., Loncar, M., Scherer, A. & Qiu, Y. Microfluidic integration of porous photonic crystal nanolasers for chemical sensing. IEEE J. Sel. Areas Commun. 23, 1348–1354 (2005).
Almeida, V. R., Xu, Q., Barrios, C. A. & Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004).
Baehr-Jones, T., Hochberg, M., Walker, C. & Scherer, A. High-Q optical resonators in silicon-on-insulator-based slot waveguides. Appl. Phys. Lett. 86, 081101 (2005).
Lien, V., Zhao, K. & Lo, Y. H. Fluidic photonic integrated circuit for in-line detection. Appl. Phys. Lett. 87, 194106 (2005).
Rindorf, L. et al. Towards biochips using microstructured optical fiber sensors. Anal. Bioanal. Chem. 385, 1370–1375 (2006).
Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).
Espinola, R. L., Tsai, M. C., Yardley, J. T. & Osgood, R. M. Fast and low power thermooptic switch thin silicon on insulator. IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
Prins, M. W. J., Welters, W. J. J. & Weekamp, J. W. Fluid control in multichannel structures by electrocapillary pressure. Science 291, 277–280 (2001).
Mach, P. et al. Tunable microfluidic optical filter. Appl. Phys. Lett. 80, 4294–4296 (2002).
Kerbage, C. & Eggleton, B. J. Tunable microfluidic optical fiber gratings. Appl. Phys. Lett. 82, 1338–1340 (2003).
Domachuk, P., Nguyen, H. C. & Eggleton, B. J. Transverse probed microfluidic switchable photonic crystal fiber devices. IEEE Photon. Technol. Lett. 16, 1900–1902 (2004).
Maune, B. et al. Liquid crystal electric tuning of a photonic crystal laser. Appl. Phys. Lett. 85, 360–362 (2004).
Iwamoto, S. et al. Observation of micromechanically controlled tuning of a photonic crystal line defect waveguide. Appl. Phys. Lett. 88, 011104 (2006).
Grunze, M. Surface science: Driven liquids. Science 283, 41–42 (1999).
Mach, P., Krupenkin, T., Yang, S., & Rogers, J. A. Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels. Appl. Phys. Lett. 81, 202–204 (2002).
Studer, V., Pepin, A., Chen, T. & Adjari, A. An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst 129, 944–949 (2004).
Liu, G. L., Kim, J., Lu, Y. & Lee, L. P. Optofluidic control using photothermal nanoparticles. Nature Mater. 5, 27–32 (2006).
Neale, S. L., Macdonald, M. P., Dholakia, K. & Krauss, T. F. All-optical control of microfluidic components using form birefringence. Nature Mater. 4, 530–533 (2005).
Atencia, J. & Beebe, D. J. Controlled microfluidic interfaces. Nature 437, 648–655 (2005).
Campbell, K. et al. A microfluidic 2 × 2 optical switch. Appl. Phys. Lett. 85, 6119–6121 (2004).
Zhu, L., Huang, Y. & Yariv, A. Integrated microfluidic variable optical attenuator. Opt. Express 13, 9916–9921 (2005).
Grillet, C. et al. Compact tunable microfluidic interferometer. Opt. Express 12, 5440–5447 (2004).
Monat, C. et al. Micron-scale tunability in photonic devices using microfluidics. Proc. SPIE Opt. Photon. 6329, 632904 (2006).
Smith, N. R., Abeysinghe, D. C., Haus, J. W. & Heikenfeld J. Agile wide-angle beam steering with electrowetting microprisms. Opt. Express 14, 6557–6563 (2006).
Tang, S. K. Y., Nayers, B. T., Vezenov, D. V. & Whitesides, G. Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels. Appl. Phys. Lett. 88, 061112 (2006).
Wolfe, D. B. et al. Diffusion controlled optical elements for optofluidics. Appl. Phys. Lett. 87, 181105 (2005).
Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).
Domachuk, P. et al. Application of optical trapping to beam manipulation in optofluidics. Opt. Express 13, 7265–7275 (2005).
Friese, M. E. J., Niemen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).
Cran-McGreehin, S., Krauss, T. F. & Dholakia, K. Integrated monolithic optical manipulation. Lab Chip 6, 1122–1124 (2006).
Rahmani, A. & Chaumet, P. Optical trapping near a photonic crystal. Opt. Express 14, 6535–6358 (2006).
Chiou, P. Y., Ohta, A. T. & Wu, M. C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005).
Lu, Y., Liu, G. L., Kim, J., Mejia, Y. X. & Lee, L. P. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 5, 119–124 (2005).
Acknowledgements
This work was funded under ARC discovery grant DP0556781 (Microfluidic photonics).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Monat, C., Domachuk, P. & Eggleton, B. Integrated optofluidics: A new river of light. Nature Photon 1, 106–114 (2007). https://doi.org/10.1038/nphoton.2006.96
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2006.96
This article is cited by
-
Towards a comprehensive characterization of spatio-temporal dependence of light-induced electromagnetic forces in dielectric liquids
Scientific Reports (2024)
-
Light-driven peristaltic pumping by an actuating splay-bend strip
Nature Communications (2023)
-
Programmable microfluidics for dynamic multiband camouflage
Microsystems & Nanoengineering (2023)
-
Dual optofluidic distributed feedback dye lasers for multiplexed biosensing applications
Scientific Reports (2023)
-
Fabrication of an erbium–ytterbium-doped waveguide amplifier at communication wavelengths for integrated optics applications
SN Applied Sciences (2023)