Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrated optofluidics: A new river of light

Abstract

The realization of miniaturized optofluidic platforms offers potential for achieving more functional and more compact devices. Such integrated systems bring fluid and light together and exploit their microscale interaction for a large variety of applications. The high sensitivity of compact microphotonic devices can generate effective microfluidic sensors, with integration capabilities. By turning the technology around, the exploitation of fluid properties holds the promise of highly flexible, tunable or reconfigurable microphotonic devices. We overview some of the exciting developments so far.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optofluidic laser.
Figure 2: Optical microcavities for biosensing.
Figure 3: Refractometer.
Figure 4: Optofluidic integrated platform.
Figure 5: Microfluidic single-beam interferometer.

Similar content being viewed by others

References

  1. Verpoorte, E. Chip vision-optics for microchips. Lab Chip 3, 42N–52N (2003).

    Google Scholar 

  2. Mogensen, K. B., Henning, K. & Kutter, J. P. Recent developments in detection for microfluidic systems. Electrophoresis 25, 3498–3512 (2004).

    Google Scholar 

  3. Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

    ADS  Google Scholar 

  4. Kuiper, S. & Hendriks, B. H. W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128–1130 (2004).

    Article  ADS  Google Scholar 

  5. Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006).

    ADS  Google Scholar 

  6. Heng, X. et al. Optofluidic microscopy–a method for implementing a high resolution optical microscope on a chip. Lab Chip 6, 1274–1276 (2006).

    Google Scholar 

  7. Krauss, T. F., De La Rue, R. M. & Brand, S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996).

    Article  ADS  Google Scholar 

  8. Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E. & Ryu, H. Y. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004).

    ADS  Google Scholar 

  9. Eggleton, B. J., Kerbage, C., Westbrook, P. S., Windeler, R. S. & Hale, A. Microstructured optical fiber devices. Opt. Express 9, 698–713 (2001).

    ADS  Google Scholar 

  10. Russel, P. Photonic crystal fibers. Science 299, 358–362 (2003).

    ADS  Google Scholar 

  11. Nguyen, H. C. et al. Tapered photonic crystal fibres: properties, characterization and applications. Appl. Phys. B 81, 377–387 (2005).

    ADS  Google Scholar 

  12. Reyes, D. R., Lossifidis, D., Auroux, P. A. & Manz, A. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74, 2623–2636 (2002).

    Google Scholar 

  13. Auroux, P. A., Lossifidis, D., Reyes, D. R. & Manz, A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74, 2637–2652 (2002).

    Google Scholar 

  14. Erickson, D. & Li, D. Integrated microfluidic devices. Anal. Chim. Acta 507, 11–26 (2004).

    Google Scholar 

  15. Chabinyc, M. L. et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal. Chem. 73, 4491–4498 (2001).

    Google Scholar 

  16. Adams, M. L., Enzelberger, M., Quake, S. & Scherer, A. Microfluidic integration on detector arrays for absorption and fluorescence micro-spectrometers. Sens. Actuat. A 104, 25–31 (2003).

    Google Scholar 

  17. Misiakos, K., Kakabakos, S. E., Petrou, P. S. & Ruf, H. H. A monolithic silicon optoelectronic transducer as a real-time affinity biosensor. Anal. Chem. 76, 1366–1373 (2004).

    Google Scholar 

  18. Shin, K. S. et al. Characterization of an integrated fluorescence-detection hybrid device with photodiode and organic light-emitting diode. IEEE Electron. Dev. Lett. 27, 746–748 (2006).

    ADS  Google Scholar 

  19. Ng, J. M. K., Gitlin, I., Stroock, A. D. & Whitesides, G. M. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23, 3461–3473 (2002).

    Google Scholar 

  20. Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    ADS  Google Scholar 

  21. Chronis, N., Liu, G. L., Jeong, K.-H. & Lee, L. P. Tunable liquid-filled microlens array integrated with microfluidic network. Opt. Express 11, 2370–2378 (2003).

    ADS  Google Scholar 

  22. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    Google Scholar 

  23. Quake, S. R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).

    ADS  Google Scholar 

  24. Husband, B., Bu, M., Evans, A. G. R. & Melvin, T. Investigation for the operation of an integrated peristaltic micropump. J. Micromech. Microeng. 14, S64–S69 (2004).

    Google Scholar 

  25. Stroock, A. D. et al. Chaotic mixer for microchannels. Science 295, 647–651 (2002).

    ADS  Google Scholar 

  26. Groisman, A., Enzelberger, M. & Quake, S. R. Microfluidic memory and control devices. Science 300, 955–958 (2003).

    ADS  Google Scholar 

  27. Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    ADS  Google Scholar 

  28. Hong, J. W. & Quake, S. R. Integrated nanoliter systems. Nature Biotechnol. 21, 1179–1183 (2003).

    Google Scholar 

  29. Hong, J. W., Studer, V., Hang, G., Anderson, W. F. & Quake, S. R. A nanoliter scale nucleic acid processor with parallel architecture. Nature Biotechnol. 22, 435–439 (2004).

    Google Scholar 

  30. Galas, J. C., Torres, J., Belotti, M., Kou, Q. & Chen, Y. Microfluidic tunable dye laser with integrated mixer and ring resonator. Appl. Phys. Lett. 86, 264101 (2005).

    ADS  Google Scholar 

  31. Erickson, D., Rockwood, T., Emery, T., Scherer, A. & Psaltis, D. Nanofluidic tuning of photonic crystal circuits. Opt. Lett. 31, 59–61 (2006).

    ADS  Google Scholar 

  32. Levy, U., Campbell, K., Groisman, A., Mookherjea, S. & Fainman, Y. On chip microfluidic tuning of an optical microring resonator. Appl. Phys. Lett. 88, 111107 (2006).

    ADS  Google Scholar 

  33. Helbo, B., Kristensen, A. & Menon, A. A micro-cavity fluidic dye laser. J. Micromech. Microeng. 13, 307–311 (2003).

    ADS  Google Scholar 

  34. Kou, Q., Yesilyurt, I. & Chen, Y. Collinear dual-color laser emission from a microfluidic dye laser. Appl. Phys. Lett. 88, 091101 (2006).

    ADS  Google Scholar 

  35. Gersborg-Hansen, M., Balslev, S., Mortensen, N. A. & Kristensen, A. A coupled cavity micro-fluidic dye ring laser. Microelec. Eng. 78–79, 185–189 (2005).

    Google Scholar 

  36. Balslev, S. & Kristensen, A. Microfluidic single mode laser using high order Bragg grating and antiguiding segments. Opt. Express 13, 344–351 (2005).

    ADS  Google Scholar 

  37. Li, Z., Zhang, Z., Scherer, A. & Psaltis, D. Mechanically tunable optofluidic distributed feedback dye laser. Opt. Express 14, 10494–10499 (2006).

    ADS  Google Scholar 

  38. Vezenov, D. V., Mayers, B. T., Wolfe, D. B. & Whitesides, G. M. Integrated fluorescent light source for optofluidic applications. Appl. Phys. Lett. 86, 041104 (2005).

    ADS  Google Scholar 

  39. Nilsson, D., Balslev, S. & Kristensen, A. A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclo-olefin copolymer (COC). J. Micromech. Microeng. 15, 296–300 (2005).

    ADS  Google Scholar 

  40. Cheng, Y., Sugioka, K. & Midorikawa, K. Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt. Lett. 29, 2007–2009 (2004).

    ADS  Google Scholar 

  41. Vezenov, D. V. et al. A low threshold high efficiency microfluidic waveguide laser. J. Am. Chem. Soc. 127, 8952–8953 (2005).

    Google Scholar 

  42. Mayers, B. T., Vezenov, D. V., Vullev, V. I. & Whitesides, G. M. Arrays and cascades of fluorescent liquid-liquid-waveguides. Anal. Chem. 77, 1310–1316 (2005).

    Google Scholar 

  43. Trindade, T., O'Brien, P. & Pickett, N. L. Nanocrystalline semiconductors: Synthesis, properties and perspectives. Chem. Mater. 13, 3843–3858 (2001).

    Google Scholar 

  44. Medintz, I. L., Tetsuo, H., Goldman, U. E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    ADS  Google Scholar 

  45. Bilenberg, B., Rasmussen, T., Balslev, S. & Kristensen, A. Real time tunability of chip based light source enabled by microfluidic mixing. J. Appl. Phys. 99, 023102 (2006).

    ADS  Google Scholar 

  46. Balslev, S. et al. Lab on a chip with integrated optical transducers. Lab Chip 6, 213–217 (2005).

    Google Scholar 

  47. Potyrailo, R. A., Hobbs, S. E. & Hieftje, G. M. Optical waveguide sensors in analytical chemistry: Today's instrumentation, applications and trends for future development. Fresenius J. Anal. Chem. 362, 349–373 (1998).

    Google Scholar 

  48. Duveneck, G. L., Abel, A. P., Bopp, M. A., Kresbach, G. M. & Ehrat, M. Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids. Anal. Chim. Acta 469, 49–61 (2002).

    Google Scholar 

  49. Hubner, J. et al. Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels. Rev. Sci. Instr. 72, 229–233 (2001).

    ADS  Google Scholar 

  50. Hofmann, O., Voirin, G., Niedermann, P. & Manz, A. Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces. Application to immunoassays on planar optical waveguides. Anal. Chem. 74, 5243–5250 (2002).

    Google Scholar 

  51. Yin, D., Deamer, D. W., Schmidt, H., Barber, J. P. & Hawkins, A. Single-molecule detection sensitivity using planar integrated optics on a chip. Opt. Lett. 31, 2136–2138 (2006).

    ADS  Google Scholar 

  52. Mogensen, K. B., Petersen, N. J., Hubner, J. & Kutter, J. P. Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices. Electrophoresis 22, 3930–3938 (2001).

    Google Scholar 

  53. Ro, K. W., Lim, K., Shim, B. C. & Hahn, J. H. Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis. Anal. Chem. 77, 5160–5166 (2005).

    Google Scholar 

  54. Ksendzov, A. & Lin, Y. Integrated optics ring resonator sensors for protein detection. Opt. Lett. 30, 3344–3346 (2005).

    ADS  Google Scholar 

  55. Heideman, R. G. & Lambeck, P. V. Remote opto-chemical sensing with extreme sensitivity: Design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sens. Actuators B Chem. 61, 100–127 (1999).

    Google Scholar 

  56. Dumais, P., Callender, C. L., Noad, J. P. & Ledderhof, C. J. Silica on slicon optical sensor based on integrated waveguides and microchannels. IEEE Photon. Technol. Lett. 17, 441–443 (2005).

    ADS  Google Scholar 

  57. Schmidt, H., Yin, D., Barber, J. P. & Hawkins, A. R. Hollow-core waveguides and 2-D waveguides arrays for integrated optics of gases and liquids. IEEE J. Sel. Top. Quant. Electron. 11, 519–527 (2005).

    ADS  Google Scholar 

  58. Campopiano, S., Bernini, R., Zeni, L. & Sarro, P. M. Microfluidic sensor based on integrated optical hollow waveguides. Opt. Lett. 29, 1894–1896 (2004).

    ADS  Google Scholar 

  59. Homola, J., Yee, S. S. & Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuat. B 54, 3–15 (1999).

    Google Scholar 

  60. Dostalek, J. et al. Surface plasmon resonance biosensor based on integrated optical waveguide. Sens. Actuat. B 76, 8–12 (2001).

    Google Scholar 

  61. Blair, S. & Chen, Y. Resonant enhanced evanescent wave fluorescence biosensing with cylindrical optical cavities. Appl. Opt. 40, 570–582 (2001).

    ADS  Google Scholar 

  62. Krioukov, E., Klunder, D. J. W., Driessen, A., Greve, J. & Otto, C. Integrated optical microcavities for enhanced evanescent wave spectroscopy. Opt. Lett. 27, 1504–1506 (2002).

    ADS  Google Scholar 

  63. Boyd, R. W. & Heebner, J. E. Sensitive disk resonator photonic biosensor. Appl. Opt. 40, 5742–5747 (2001).

    ADS  Google Scholar 

  64. Krioukov, E., Greve, J. & Otto, C. Performance of integrated optical microcavities for refractive index and fluorescence sensing. Sens. Actuat. B 90, 58–67 (2003).

    Google Scholar 

  65. Niehusmann, J. et al. Ultrahigh-quality-factor silicon-on-insulator microring resonator. Opt. Lett. 29, 2861–2863 (2004).

    ADS  Google Scholar 

  66. Kippenberg, T. J., Spillane, S. M., Armani, D. K. & Vahala, K. J. Fabrication and coupling to planar high-Q silica disk microcavities. Appl. Phys. Lett. 83, 797–799 (2003).

    ADS  Google Scholar 

  67. Song, B. S., Noda, S., Asano, T. & Akahane Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005).

    ADS  Google Scholar 

  68. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    ADS  Google Scholar 

  69. Armani, A. M. & Vahala, K. J. Heavy water detection using ultra high Q microcavities. Opt. Lett. 31, 1896–1898 (2006).

    ADS  Google Scholar 

  70. Krioukov, E., Klunder, D. J. W., Driessen, A., Greve, J. & Otto, C. Sensor based on an integrated optical microcavity. Opt. Lett. 27, 512–514 (2002).

    ADS  Google Scholar 

  71. Chao, C. Y., Fung, W. & Guo, L. J. Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Top. Quant. Electron. 12, 134–142 (2006).

    ADS  Google Scholar 

  72. Yang, J. & Guo, L. J. Optical sensors based on active microcavities. IEEE J. Sel. Top. Quant. Electron. 12, 143–147 (2006).

    ADS  Google Scholar 

  73. Fan, S. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett. 80, 908–910 (2002).

    ADS  Google Scholar 

  74. Chao, C. Y. & Guo, L. J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 83, 1527–1529 (2003).

    ADS  Google Scholar 

  75. Cusano, A., Iadicicco, A., Campopiano, S., Giordano, M. & Cutolo, A. Thinned and micro-structured fibre Bragg gratings: Towards new all-fibre high-sensitivitiy chemical sensors. J. Opt. A 7, 734–741 (2005).

    ADS  Google Scholar 

  76. Liang, W., Huang, Y., Xu, Y., Lee, R. K. & Yariv, A. Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 86, 151122 (2005).

    ADS  Google Scholar 

  77. Hopman, W. C. L. et al. Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors. IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).

    ADS  Google Scholar 

  78. Domachuk, P., Littler, I. C. M., Cronin-Golomb, M. & Eggleton, B. J. Compact resonant integrated microfluidic refractometer. Appl. Phys. Lett. 88, 093513 (2006).

    ADS  Google Scholar 

  79. Loncar, M., Scherer, A. & Qiu, Y. Photonic crystal laser sources for chemical detection. Appl. Phys. Lett. 82, 4648–4650 (2003).

    ADS  Google Scholar 

  80. Chow, E., Grot, A., Mirkarimi, W. L., Sigalas, M. & Girolami, G. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 29, 1093–1095 (2004).

    ADS  Google Scholar 

  81. Adams, M. L., Loncar, M., Scherer, A. & Qiu, Y. Microfluidic integration of porous photonic crystal nanolasers for chemical sensing. IEEE J. Sel. Areas Commun. 23, 1348–1354 (2005).

    Google Scholar 

  82. Almeida, V. R., Xu, Q., Barrios, C. A. & Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004).

    ADS  Google Scholar 

  83. Baehr-Jones, T., Hochberg, M., Walker, C. & Scherer, A. High-Q optical resonators in silicon-on-insulator-based slot waveguides. Appl. Phys. Lett. 86, 081101 (2005).

    ADS  Google Scholar 

  84. Lien, V., Zhao, K. & Lo, Y. H. Fluidic photonic integrated circuit for in-line detection. Appl. Phys. Lett. 87, 194106 (2005).

    ADS  Google Scholar 

  85. Rindorf, L. et al. Towards biochips using microstructured optical fiber sensors. Anal. Bioanal. Chem. 385, 1370–1375 (2006).

    Google Scholar 

  86. Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).

    ADS  Google Scholar 

  87. Espinola, R. L., Tsai, M. C., Yardley, J. T. & Osgood, R. M. Fast and low power thermooptic switch thin silicon on insulator. IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).

    ADS  Google Scholar 

  88. Prins, M. W. J., Welters, W. J. J. & Weekamp, J. W. Fluid control in multichannel structures by electrocapillary pressure. Science 291, 277–280 (2001).

    ADS  Google Scholar 

  89. Mach, P. et al. Tunable microfluidic optical filter. Appl. Phys. Lett. 80, 4294–4296 (2002).

    ADS  Google Scholar 

  90. Kerbage, C. & Eggleton, B. J. Tunable microfluidic optical fiber gratings. Appl. Phys. Lett. 82, 1338–1340 (2003).

    ADS  Google Scholar 

  91. Domachuk, P., Nguyen, H. C. & Eggleton, B. J. Transverse probed microfluidic switchable photonic crystal fiber devices. IEEE Photon. Technol. Lett. 16, 1900–1902 (2004).

    ADS  Google Scholar 

  92. Maune, B. et al. Liquid crystal electric tuning of a photonic crystal laser. Appl. Phys. Lett. 85, 360–362 (2004).

    ADS  Google Scholar 

  93. Iwamoto, S. et al. Observation of micromechanically controlled tuning of a photonic crystal line defect waveguide. Appl. Phys. Lett. 88, 011104 (2006).

    ADS  Google Scholar 

  94. Grunze, M. Surface science: Driven liquids. Science 283, 41–42 (1999).

    ADS  Google Scholar 

  95. Mach, P., Krupenkin, T., Yang, S., & Rogers, J. A. Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels. Appl. Phys. Lett. 81, 202–204 (2002).

    ADS  Google Scholar 

  96. Studer, V., Pepin, A., Chen, T. & Adjari, A. An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst 129, 944–949 (2004).

    ADS  Google Scholar 

  97. Liu, G. L., Kim, J., Lu, Y. & Lee, L. P. Optofluidic control using photothermal nanoparticles. Nature Mater. 5, 27–32 (2006).

    ADS  Google Scholar 

  98. Neale, S. L., Macdonald, M. P., Dholakia, K. & Krauss, T. F. All-optical control of microfluidic components using form birefringence. Nature Mater. 4, 530–533 (2005).

    ADS  Google Scholar 

  99. Atencia, J. & Beebe, D. J. Controlled microfluidic interfaces. Nature 437, 648–655 (2005).

    ADS  Google Scholar 

  100. Campbell, K. et al. A microfluidic 2 × 2 optical switch. Appl. Phys. Lett. 85, 6119–6121 (2004).

    ADS  Google Scholar 

  101. Zhu, L., Huang, Y. & Yariv, A. Integrated microfluidic variable optical attenuator. Opt. Express 13, 9916–9921 (2005).

    ADS  Google Scholar 

  102. Grillet, C. et al. Compact tunable microfluidic interferometer. Opt. Express 12, 5440–5447 (2004).

    ADS  Google Scholar 

  103. Monat, C. et al. Micron-scale tunability in photonic devices using microfluidics. Proc. SPIE Opt. Photon. 6329, 632904 (2006).

    Google Scholar 

  104. Smith, N. R., Abeysinghe, D. C., Haus, J. W. & Heikenfeld J. Agile wide-angle beam steering with electrowetting microprisms. Opt. Express 14, 6557–6563 (2006).

    ADS  Google Scholar 

  105. Tang, S. K. Y., Nayers, B. T., Vezenov, D. V. & Whitesides, G. Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels. Appl. Phys. Lett. 88, 061112 (2006).

    ADS  Google Scholar 

  106. Wolfe, D. B. et al. Diffusion controlled optical elements for optofluidics. Appl. Phys. Lett. 87, 181105 (2005).

    ADS  Google Scholar 

  107. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    ADS  Google Scholar 

  108. Domachuk, P. et al. Application of optical trapping to beam manipulation in optofluidics. Opt. Express 13, 7265–7275 (2005).

    ADS  Google Scholar 

  109. Friese, M. E. J., Niemen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).

    ADS  Google Scholar 

  110. Cran-McGreehin, S., Krauss, T. F. & Dholakia, K. Integrated monolithic optical manipulation. Lab Chip 6, 1122–1124 (2006).

    Google Scholar 

  111. Rahmani, A. & Chaumet, P. Optical trapping near a photonic crystal. Opt. Express 14, 6535–6358 (2006).

    Google Scholar 

  112. Chiou, P. Y., Ohta, A. T. & Wu, M. C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005).

    ADS  Google Scholar 

  113. Lu, Y., Liu, G. L., Kim, J., Mejia, Y. X. & Lee, L. P. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 5, 119–124 (2005).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was funded under ARC discovery grant DP0556781 (Microfluidic photonics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Monat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monat, C., Domachuk, P. & Eggleton, B. Integrated optofluidics: A new river of light. Nature Photon 1, 106–114 (2007). https://doi.org/10.1038/nphoton.2006.96

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2006.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing