Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Lasers

All mirrors are not created equal

Lasers are a triumph of modern optics, and mirrors play a crucial role in the coherent light produced. A hi-tech reflector could make lasers a lot smaller and lead to their inclusion in an even wider range of optical devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mirrors go head to head: the HCG (left) versus the DBR (right).
Figure 2: How do different mirrors perform? By calculating the reflectivity as a function of normalized wavelength, we can compare the reflecting capabilities of a simple cleaved crystal facet (black dashed line), a traditional DBR (red dashed line) and the HCG from the Berkeley group (blue line).
Figure 3

References

  1. Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. Nature Photon. 1, 119–122 (2007).

    Article  ADS  Google Scholar 

  2. Yariv, A. Optical Electronics 4th edn (Holt, Rinehart and Winston, Philadelphia, 1991).

    Google Scholar 

  3. Kogelnik, H. & Li, T. Appl. Opt. 5, 1550–1567 (1966).

    Article  ADS  Google Scholar 

  4. Born, M. & Wolf, E. Principles of Optics 7th edn (Cambridge Univ. Press, Cambridge, 1999).

    Book  Google Scholar 

  5. Coldren, L. A. & Corzine S. W. Diode Lasers and Photonic Integrated Circuits Ch. 3 (Wiley, New York, 1995).

    Google Scholar 

  6. Mitrofanov, O. et al. Appl. Phys. Lett. 88, 171101 (2006).

  7. Iga, K., Koyama, F. & Kinoshita, S. IEEE J. Quant. Electron. 24, 1845–1855 (1988).

    Article  ADS  Google Scholar 

  8. Nishiyama, N. et al. IEEE J. Sel. Top. Quant. Electron. 11, 990–998 (2005).

    Article  ADS  Google Scholar 

  9. Mateus, C. F. R., Huang, M. C. Y., Deng, Y., Neureuther, A. R. & Chang-Hasnain, C. J. IEEE Photon. Technol. Lett. 16, 518–520 (2004).

    Article  ADS  Google Scholar 

  10. Mateus, C. F. R., Huang, M. C. Y., Chen, L., Chang-Hasnain, C. J. & Suzuki, Y. IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).

    Article  ADS  Google Scholar 

  11. Neukermans, A. & Ramaswami, R. IEEE Commun. Mag. 39, 62–69 (2001).

    Article  Google Scholar 

  12. Mateus, C. F. R., Huang, M. C. Y. & Chang-Hasnain, C. J. Sens. Actuat. A 119, 57–62 (2005).

    Article  Google Scholar 

  13. Chang-Hasnain, C. J. IEEE J. Sel. Top. Quant. Electron. 6, 978–987 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willner, A. All mirrors are not created equal. Nature Photon 1, 87–88 (2007). https://doi.org/10.1038/nphoton.2006.88

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2006.88

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing