Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Field enhancement within an optical fibre with a subwavelength air core


Tightly confined light enables a variety of applications ranging from nonlinear light management to atomic manipulation. Photonic-crystal fibres (PCFs) can provide strong guidance in very small cores while simultaneously offering long interaction lengths1. However, light confinement in waveguides is usually ultimately limited by diffraction2,3, which tends to spread light away from the waveguiding core, despite its higher refractive index. It was recently demonstrated that such spreading fields can be trapped by a nanometre-scale slot inside a strongly guiding silicon-on-insulator (SOI) waveguide4,5. In this letter we demonstrate the concentration of optical energy within a subwavelength-scale air hole running down the length of a PCF core. The core resembles a submicrometre-diameter tube with a bore diameter of 200 nm or less. The high intensity in an air hole, coupled with long interaction lengths, promises a new class of experiments in light–matter interaction and nonlinear fibre optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images from the fabricated PCF cross-sections.
Figure 2: Optical fields and figure of merit.
Figure 3: Group velocity dispersion of the fibres shown in Fig. 1.
Figure 4: Near-field mode patterns for PCF 3.

Similar content being viewed by others


  1. Knight, J. C. Photonic crystal fibers. Nature 424, 847–851 (2003).

    Article  ADS  Google Scholar 

  2. Foster, M. A., Moll, K. D. & Gaeta, A. L. Optimal waveguide dimensions for nonlinear interactions. Opt. Express 12, 2880–2887 (2004).

    Article  ADS  Google Scholar 

  3. Zheltikov, A. M. The physical limit for the waveguide enhancement of nonlinear-optical processes. Opt. Spectrosc. 95, 410–415 (2003).

    Article  ADS  Google Scholar 

  4. Xu, Q. F., Almeida, V. R., Panepucci, R. R. & Lipson, M. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 29, 1626–1628 (2004).

    Article  ADS  Google Scholar 

  5. Almeida, V. R., Xu, Q. F., Barrios, C. A. & Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004).

    Article  ADS  Google Scholar 

  6. Baehr-Jones, T., Hochberg, M., Walker, C. & Scherer, A. High-Q optical resonators in silicon-on-insulator-based slot waveguides. Appl. Phys. Lett. 86, 081101 (2005).

    Article  ADS  Google Scholar 

  7. Roberts, P. et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13, 236–244 (2005).

    Article  ADS  Google Scholar 

  8. Benabid, F., Knight, J. C., Antonopoulos, G. & Russell, P. S. J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399–402 (2002).

    Article  ADS  Google Scholar 

  9. Saitoh, K., Florous, N. & Koshiba, M. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses. Opt. Express 13, 8365–8371 (2005).

    Article  ADS  Google Scholar 

  10. Ito, H., Sakaki, K., Nakata, T., Jhe, W. & Ohtsu, M. Optical-potential for atom guidance in a cylindrical-core hollow-fiber. Opt. Commun. 115, 57–64 (1995).

    Article  ADS  Google Scholar 

  11. Vahala, K. J. Optical microcavities. Nature 424, 839–845 (2003).

    Article  ADS  Google Scholar 

  12. Nazarkin, A., Korn, G., Wittmann, M. & Elsaesser, T. Group-velocity-matched interactions in hollow waveguides: Enhanced high-order Raman scattering by impulsively excited molecular vibrations. Phys. Rev. A. 65, 041802 (2000).

    Article  ADS  Google Scholar 

  13. Koshiba, M. & Tsuji, Y. Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems. J. Lightwave Technol. 18, 737–743 (2000).

    Article  ADS  Google Scholar 

Download references


The authors would like to acknowledge help from A. George in fabricating the fibres and assistance from A. Frasson and H.E.H. Figueroa in the numerical simulations. G.S.W. and C.M.B.C. acknowledge financial support of the National Council for Scientific and Technological Development (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). Work at Bath was funded by the UK Engineering and Physical Sciences Research Council.

Author information

Authors and Affiliations


Corresponding author

Correspondence to G. S. Wiederhecker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiederhecker, G., Cordeiro, C., Couny, F. et al. Field enhancement within an optical fibre with a subwavelength air core. Nature Photon 1, 115–118 (2007).

Download citation

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing