Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Room-temperature continuous-wave lasing in GaN/InGaN microdisks

Abstract

Microdisk lasers feature low-loss, high-quality whispering gallery modes1,2,3 that offer the potential for ultralow-threshold lasing4,5,6,7 that is not limited by challenges in mirror fabrication. Here we report fabrication and optical measurements of GaN-based microdisk lasers with a very low threshold of 300 W cm−2—orders of magnitude lower than any previous GaN microdisk laser. This is also the first report of room-temperature, continuous-wave (CW) lasing in a GaN microdisk.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Epitaxial structure of material used to make microdisks.
Figure 2: Scanning electron microscope image of a 1.2-µm microdisk.
Figure 3: Room-temperature photoluminescence spectra.
Figure 4: FDTD simulation data for the 1.2-µm disk.
Figure 5: Power-dependent data for 1.2-µm disk.

References

  1. Lord Raleigh . The Problem of the Whispering Gallery, in Scientific Papers, Vol. 5, 617–620 (Cambridge Univ. Press, Cambridge, 1912).

  2. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J., & Logan, R. A. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992).

    ADS  Article  Google Scholar 

  3. Mohideen, U., Slusher, R. E., Jahnke, F., & Koch, S. W. Semiconductor microlaser linewidths. Phys. Rev. Lett. 73, 1785–1788 (1994).

    ADS  Article  Google Scholar 

  4. Slusher, R. E. et al. Threshold characteristics of semiconductor microdisk lasers. Appl. Phys. Lett. 63, 1310–1312 (1993).

    ADS  Article  Google Scholar 

  5. Seassal, C. et al. InP microdisk lasers on silicon wafer: CW room temperature operation at 1.6 µm. Electron. Lett. 37, 222–223 (2001).

    Article  Google Scholar 

  6. Hovinen, M. et al. Blue-green laser emission from ZnSe quantum well microresonators. Appl. Phys. Lett. 63, 3128–3130 (1993).

    ADS  Article  Google Scholar 

  7. Michler, P. et al. Laser emission from quantum dots in microdisk structures. Appl. Phys. Lett. 77, 184–186 (2000).

    ADS  Article  Google Scholar 

  8. Chang, S., Rex, N. B., Chang, R. K., Chong, G. & Guido, L. J. Stimulated emission and lasing in whispering-gallery modes of GaN microdisk cavities. Appl. Phys. Lett. 75, 166–168 (1999).

    ADS  Article  Google Scholar 

  9. Rex, N. B., Chang, R. K. & Guido, L. J. Threshold lowering in GaN micropillar lasers by means of spatially selective optical pumping. IEEE Photon. Technol. Lett. 13, 1–3 (2001).

    ADS  Article  Google Scholar 

  10. Mair, R. A. et al. Optical modes within III-nitride multiple quantum well microdisk cavities. Appl. Phys. Lett. 72, 1530–1532 (1998).

    ADS  Article  Google Scholar 

  11. Haberer, E. D. et al. Free-standing, optically pumped, GaN/InGaN microdisk lasers fabricated by photoelectrochemical etching. Appl. Phys. Lett. 85, 5179–5181 (2004).

    ADS  Article  Google Scholar 

  12. Haberer, E. D. et al. Observation of high Q resonant modes in optically pumped GaN/InGaN microdisks fabricated using photoelectrochemical etching. Phys. Stat. Sol. C 2, 2845–2848 (2005).

    Google Scholar 

  13. Park, S. H. et al. Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme. Appl. Phys. Lett. 83, 2121–2123 (2003).

    ADS  Article  Google Scholar 

  14. Chu, J. T. et al. Room-temperature operation of optically pumped blue-violet GaN-based vertical-cavity surface-emitting lasers fabricated by laser lift-off. Jpn. J. Appl. Phys. 45, 2556–2560 (2006).

    ADS  Article  Google Scholar 

  15. Levi, A. F. J. et al. Directional light coupling from microdisk lasers. Appl. Phys. Lett. 62, 561–563 (1993).

    ADS  Article  Google Scholar 

  16. Aleksiejunas, R. et al. Carrier transport and recombination in InGaN/GaN heterostructures, studied by optical four-wave mixing technique. Phys. Stat. Sol. C 0, 2686–2690 (2003).

    Google Scholar 

  17. Haberer, E. D. et al. Removal of thick (>100 nm) InGaN layers for optical devices using bandgap-selective photoelectrochemical etching. Appl. Phys. Lett. 85, 762–764 (2004).

    ADS  Article  Google Scholar 

  18. Coldren, L. A. & Corzine, S. W. Diode Lasers and Photonic Integrated Circuits 40 (John Wiley & Sons, New York, 1995).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Y.-S. Choi for advice about processing and optical measurements and K. Hennessey for help with FDTD simulations. Funding for this work was provided by DMEA under the Center for Nanoscience Innovation for Defense. A.C.T. is supported by the Department of Defense NDSEG fellowship. K.H.L. thanks Wingate Foundation for assisting with the research visit to UCSB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adele C. Tamboli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tamboli, A., Haberer, E., Sharma, R. et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks. Nature Photon 1, 61–64 (2007). https://doi.org/10.1038/nphoton.2006.52

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2006.52

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing