Abstract
On-chip optical buffers based on waveguide delay lines might have significant implications for the development of optical interconnects in computer systems. Silicon-on-insulator (SOI) submicrometre photonic wire waveguides are used, because they can provide strong light confinement at the diffraction limit, allowing dramatic scaling of device size. Here we report on-chip optical delay lines based on such waveguides that consist of up to 100 microring resonators cascaded in either coupled-resonator or all-pass filter (APF) configurations. On-chip group delays exceeding 500 ps are demonstrated in a device with a footprint below 0.09 mm2. The trade-offs between resonantly enhanced group delay, device size, insertion loss and operational bandwidth are analysed for various delay-line designs. A large fractional group delay exceeding 10 bits is achieved for bit rates as high as 20 Gbps. Measurements of system-level metrics as bit error rates for different bit rates demonstrate error-free operation up to 5 Gbps.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Low-loss optical waveguides made with a high-loss material
Light: Science & Applications Open Access 12 January 2021
-
Photonic integrated field-programmable disk array signal processor
Nature Communications Open Access 21 January 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Semiconductor Industry Association. International Technology Roadmap for Semiconductors (ITRS), Interconnect Chapter (Semiconductor Industry Association, 2005). Available at http://www.itrs.net.
Luijten, R., Minkenberg, C., Hemenway, R., Sauer, M. & Grzybowski, R. Viable opto-electronic HPC interconnect fabrics. Proceedings of the ACM/IEEE SC05 Supercomputer 2005 Conference, 8–16 (2005).
Hau, L. V. et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).
Bajcsy, M., Zibrov, A. S. & Lukin, M. D. Stationary pulses of light in an atomic medium. Nature 426, 638–641 (2003).
Okawachi, Y. et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902 (2005).
Boyd, R. W., Gauthier, D. J., Gaeta, A. L. & Willner, A. E. Maximum time delay achievable on propagation through a slow-light medium. Phys. Rev. A 71, 023801 (2005).
Tucker, R. S., Ku, P.-C. & Chang-Hasnain, C. J. Slow-light optical buffers: capabilities and fundamental limitations. J. Lightwave Technol. 23, 4046–4066 (2005).
Khurgin, J. B. Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. J. Opt. Soc. Am. B 22, 1062–1074 (2005).
Rasras, M. S. et al. Integrated resonance-enhanced variable optical delay lines. IEEE Photon. Technol. Lett. 17, 834–836 (2005).
Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).
Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: A proposal and analysis. Opt. Lett. 24, 711–713 (1999).
Heebner, J. E., Boyd, R. W. & Park, Q. Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide. Phys. Rev. E 65, 036619 (2002).
Scalora, M., Flynn, R. J., Reinhardt, S. B. & Fork, R. L. Ultrashort pulse propagation at the photonic band-edge — large tunable group delay with minimal distortion and loss. Phys. Rev. E 54, R1078 (1996).
Yanik, M. F. & Fan, S. Stopping light all-optically. Phys. Rev. Lett. 92, 083901 (2004).
Maleki, L., Matsko, A. B., Savchenkov, A. A. & Ilchenko, V. S. Tunable delay line with interacting whispering-gallery-mode resonators. Opt. Lett. 29, 626–628 (2004).
Lenz, G., Eggleton, B. J., Madsen, C. K. & Slusher, R. E. Optical delay lines based on optical filters. IEEE J. Quantum Electron. 37, 525–532 (2001).
Xu, Q. et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901 (2006).
Little, B. E. et al. Ultra-compact Si/SiO2 microring resonator optical channel dropping filters. IEEE Photon. Technol. Lett. 10, 549–551 (1998).
Madsen, C. K. & Lenz, G. Optical all-pass filters for phase response design with applications for dispersion compensation. IEEE Photon. Technol. Lett. 10, 994–996 (1998).
Little, B. E. et al. Very high-order microring resonator filters for WDM applications. IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
Barwicz T. et al. Microring-resonator-based add–drop filters in SiN: fabrication and analysis. Opt. Express 12, 1437–1442 (2004).
Barwicz, T. et al. Fabrication of add–drop filters based on frequency-matched microring resonators. J. Lightwave Technol. 24, 2207–2218 (2006).
Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).
Baehr-Jones, T., Hochberg, M., Walker, C. & Scherer, A. High-Q ring resonators in thin silicon-on-insulator. Appl. Phys. Lett. 85, 3346–3348 (2004).
Xia, F., Sekaric, L. & Vlasov, Y. A. Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators. Opt. Express 14, 3872–3886 (2006).
Poon, J. K. S., Zhu, L., DeRose, G. A. & Yariv, A. Polymer microring coupled resonator optical waveguides. IEEE J. Lightwave Technol. 24, 1843–1849 (2006).
Poon, J. K. S., Zhu, L., DeRose, G. A. & Yariv, A. Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett. 31, 456–458 (2006).
Poon, J. K. S., Scheuer, J., Xu, Y. & Yariv, A. Designing coupled-resonator optical waveguide delay lines. J. Opt. Soc. Am. B 21, 1665–1673 (2004).
Xia, F., Sekaric, L., O'Boyle, M. & Vlasov, Y. A. Coupled resonator optical waveguides based on silicon-on-insulator photonic wires. Appl. Phys. Lett. 89, 041122 (2006).
Pozzi, F. et al. Integrated high order filters in AlGaAs waveguides with up to eight side-coupled racetrack microresonators. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, paper CWK2 (2006).
Dumon, P. et al. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
Vlasov, Y. A. & McNab, S. J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622–1631 (2004).
Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS Technology. IEEE J. Lightwave Technol. 23, 401–412 (2005).
Dulkeith, E. et al. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14, 3853–3863 (2006).
Tsuchizawa, T. et al. Microphotonics devices based on silicon microfabrication technology, IEEE J. Sel. Top Quantum Electron. 11, 232–239 (2005).
Sakai, A., Fukazawa, T. & Baba, T. Estimation of polarization crosstalk at a micro-bend in Si-photonic wire waveguide. J. Lightwave Technol. 22, 520–525 (2004).
Melloni, A. & Martinelli, M. Synthesis of direct-coupled-resonators bandpass filters for WDM systems. J. Lightwave Technol. 20, 296–303 (2002).
Stefanou, N. & Modinos, A. Impurity bands in photonic insulators. Phys. Rev. B 57, 12127–12133 (1998).
Little, B. E. & Chu, S. T. Theory of polarization rotation and conversion in vertically coupled microresonators. IEEE Photon. Technol. Lett. 12, 401–403 (2000).
Morichetti, F., Melloni, A. & Martinelli, M. Effects of polarization rotation in optical ring-resonator-based devices. J. Lightwave Technol. 24, 573–585 (2006).
Heebner, J. E., Chak, P., Pereira, S., Sipe, J. E. & Boyd, R. W. Distributed and localized feedback microresonator sequences for linear and nonlinear optics. J. Opt. Soc. Am. B 21, 1818–1832 (2004).
Popovic, M. A., Manolatou, C. & Haus, H. A. Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters. Opt. Express 14, 1208–1222 (2006).
Ye, Y. et al. Finite-size effect on one dimensional coupled resonator optical waveguides. Phys. Rev. E 69, 056604 (2004).
Madsen, C. & Zhao, J. Optical Filter Design and Analysis: A Signal Processing Approach, Ch. 5. (Wiley, New York, 1999).
Stenner, M. D., Gauthier, D. J. & Neifeld, M. A. Fast causal information transmission in a medium with a slow group velocity. Phys. Rev. Lett. 94, 053902 (2005).
Khurgin, J. B. Expanding the bandwidth of slow-light photonic devices based on coupled resonators. Opt. Lett. 30, 513–515 (2005).
Agrawal, G. P. Fiber-Optic Communication Systems 3rd edn, Ch. 4 (Wiley, New York, 2001).
Dulkeith, E., Vlasov, Y. A., Chen, X., Panoiu, N. & Osgood, R. Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt. Express 14, 5524–5534 (2006).
Espinola, R., Dadap, J., Osgood, R., McNab, S. J. & Vlasov, Y. A. C-band wavelength conversion in silicon photonic wire waveguides. Opt. Express 13, 4341–4349 (2005).
Espinola, R., Dadap, J., Osgood, R., McNab, S. J. & Vlasov, Y. A. Raman amplification in ultrasmall silicon-on-insulator photonic wire waveguides. Opt. Express 12, 3713–3718 (2004).
Acknowledgements
This work was partially supported by the DARPA Slow Light program. The authors are grateful to C. Schow, L. Schares and D. Kuchta for help with BER and eye-diagram measurements, to S. McNab, B. Banke and J. Robert for AFM and LER measurements, and to W. Green for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary information I and II (PDF 280 kb)
Rights and permissions
About this article
Cite this article
Xia, F., Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nature Photon 1, 65–71 (2007). https://doi.org/10.1038/nphoton.2006.42
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2006.42
This article is cited by
-
Optical hextuple ring resonator-based delay line architecture
Journal of Optics (2022)
-
NLR-OP: a high-performance optical router based on North-Last turning model for multicore processors
The Journal of Supercomputing (2022)
-
Low-loss optical waveguides made with a high-loss material
Light: Science & Applications (2021)
-
Propagation of fundamental mode in regularly bending multi-mode waveguides
Optical and Quantum Electronics (2021)
-
Multi-Stage Mach–Zehnder Based Continuously Tunable Photonic Delay Line
Wireless Personal Communications (2021)