Abstract
Membrane nanopores—hollow nanoscale barrels that puncture biological or synthetic membranes—have become powerful tools in chemical- and biosensing, and have achieved notable success in portable DNA sequencing. The pores can be self-assembled from a variety of materials, including proteins, peptides, synthetic organic compounds and, more recently, DNA. But which building material is best for which application, and what is the relationship between pore structure and function? In this Review, I critically compare the characteristics of the different building materials, and explore the influence of the building material on pore structure, dynamics and function. I also discuss the future challenges of developing nanopore technology, and consider what the next-generation of nanopore structures could be and where further practical applications might emerge.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).
Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat. Biotechnol. 30, 344–348 (2012).
Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).
Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).
Howorka, S. & Siwy, Z. Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38, 2360–2384 (2009).
Wang, G., Wang, L., Han, Y., Zhou, S. & Guan, X. Nanopore stochastic detection: diversity, sensitivity, and beyond. Acc. Chem. Res. 46, 2867–2877 (2013).
Stoloff, D. H. & Wanunu, M. Recent trends in nanopores for biotechnology. Curr. Opin. Biotechnol. 24, 699–704 (2013).
Reiner, J. E. et al. Disease detection and management via single nanopore-based sensors. Chem. Rev. 112, 6431–6451 (2012).
Miles, B. N. et al. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chem. Soc. Rev. 42, 15–28 (2013).
Movileanu, L. Interrogating single proteins through nanopores: challenges and opportunities. Trends Biotechnol. 27, 333–341 (2009).
Litvinchuk, S. et al. Synthetic pores with reactive signal amplifiers as artificial tongues. Nat. Mater. 6, 576–580 (2007).
Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R. H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).
Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).
Burns, J. R., Seifert, A., Fertig, N. & Howorka, S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotech. 11, 152–156 (2016).
Zhang, Y. et al. Computational design and experimental characterization of peptides intended for pH-dependent membrane insertion and pore formation. ACS Chem. Biol. 10, 1082–1093 (2015).
Fernandez-Lopez, S. et al. Antibacterial agents based on the cyclic D,L-α-peptide architecture. Nature 412, 452–455 (2001).
Dekker, C. Solid-state nanopores. Nat. Nanotech. 2, 209–215 (2007).
Heerema, S. J. & Dekker, C. Graphene nanodevices for DNA sequencing. Nat. Nanotech. 11, 127–136 (2016).
Lindsay, S. The promises and challenges of solid-state sequencing. Nat. Nanotech. 11, 109–111 (2016).
Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotech. 10, 1070–1076 (2015).
Bell, N. A. & Keyser, U. F. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nat. Nanotech. 11, 645–651 (2016).
Mayer, M. & Yang, J. Engineered ion channels as emerging tools for chemical biology. Acc. Chem. Res. 46, 2998–3008 (2013).
Langecker, M., Arnaut, V., List, J. & Simmel, F. C. DNA nanostructures interacting with lipid bilayer membranes. Acc. Chem. Res. 47, 1807–1815 (2014).
Fyles, T. M. Synthetic ion channels in bilayer membranes. Chem. Soc. Rev. 36, 335–347 (2007).
Gokel, G. W. & Negin, S. Synthetic ion channels: from pores to biological applications. Acc. Chem. Res. 46, 2824–2833 (2013).
Sakai, N. & Matile, S. Synthetic ion channels. Langmuir 29, 9031–9040 (2013).
Bell, N. A. & Keyser, U. F. Nanopores formed by DNA origami: a review. FEBS Lett. 588, 3564–3570 (2014).
Shi, W., Friedman, A. K. & Baker, L. A. Nanopore sensing. Anal. Chem. 89, 157–188 (2017).
Majd, S. et al. Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr. Opin. Biotechnol. 21, 439–476 (2010).
Ayub, M. & Bayley, H. Engineered transmembrane pores. Curr. Opin. Chem. Biol. 34, 117–126 (2016).
Meier, W., Nardin, C. & Winterhalter, M. Reconstitution of channel proteins in (polymerized) ABA triblock copolymer membranes. Angew. Chem. Int. Ed. 39, 4599–4602 (2000).
Nardin, C., Winterhalter, M. & Meier, W. Giant free-standing ABA triblock copolymer membranes. Langmuir 16, 7708–7712 (2010).
Mosgaard, L. D. & Heimburg, T. Lipid ion channels and the role of proteins. Acc. Chem. Res. 46, 2966–2976 (2013).
Reiss, P. & Koert, U. Ion-channels: goals for function-oriented synthesis. Acc. Chem. Res. 46, 2773–2780 (2013).
De Riccardis, F., Izzo, I., Montesarchio, D. & Tecilla, P. Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity. Acc. Chem. Res. 46, 2781–2790 (2013).
Li, H. et al. Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia. Nat. Chem. 8, 24–32 (2016).
Schmidt, J. Membrane platforms for biological nanopore sensing and sequencing. Curr. Opin. Biotechnol. 39, 17–27 (2016).
Urban, M. et al. Highly parallel transport recordings on a membrane-on-nanopore chip at single molecule resolution. Nano Lett. 14, 1674–1680 (2014).
Funakoshi, K., Suzuki, H. & Takeuchi, S. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78, 8169–8174 (2006).
Holden, M. A., Needham, D. & Bayley, H. Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129, 8650–8655 (2007).
Jeon, T. J., Malmstadt, N. & Schmidt, J. J. Hydrogel-encapsulated lipid membranes. J. Am. Chem. Soc. 128, 42–43 (2006).
Shim, J. W. & Gu, L. Q. Stochastic sensing on a modular chip containing a single-ion channel. Anal. Chem. 79, 2207–2213 (2007).
Daly, S. M., Heffernan, L. A., Barger, W. R. & Shenoy, D. K. Photopolymerization of mixed monolayers and black lipid membranes containing gramicidin A and diacetylenic phospholipids. Langmuir 22, 1215–1222 (2006).
Heitz, B. A., Jones, I. W., Hall, H. K. Jr, Aspinwall, C. A. & Saavedra, S. S. Fractional polymerization of a suspended planar bilayer creates a fluid, highly stable membrane for ion channel recordings. J. Am. Chem. Soc. 132, 7086–7093 (2010).
Wei, R. S., Gatterdam, V., Wieneke, R., Tampe, R. & Rant, U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat. Nanotech. 7, 257–263 (2012).
Wang, Y., Zheng, D., Tan, Q., Wang, M. X. & Gu, L. Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotech. 6, 668–674 (2011).
Traversi, F. et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat. Nanotech. 8, 939–945 (2013).
Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotech. 5, 807–814 (2010).
Yusko, E. C. et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotech. 6, 253–260 (2011).
Moreau, C. J., Dupuis, J. P., Revilloud, J., Arumugam, K. & Vivaudou, M. Coupling ion channels to receptors for biomolecule sensing. Nat. Nanotech. 3, 620–625 (2008).
Chen, M., Khalid, S., Sansom, M. S. & Bayley, H. Outer membrane protein G: engineering a quiet pore for biosensing. Proc. Natl Acad. Sci. USA 105, 6272–6277 (2008).
Soskine, M. et al. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Nano Lett. 12, 4895–4900 (2012).
Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).
Valiyaveetil, F. I., Leonetti, M., Muir, T. W. & MacKinnon, R. Ion selectivity in a semisynthetic K+ channel locked in the conductive conformation. Science 314, 1004–1007 (2006).
Focke, P. J. & Valiyaveetil, F. I. Studies of ion channels using expressed protein ligation. Curr. Opin. Chem. Biol. 14, 797–802 (2010).
Lee, J. & Bayley, H. Semisynthetic protein nanoreactor for single-molecule chemistry. Proc. Natl Acad. Sci. USA 112, 13768–13773 (2015).
Clayton, D. et al. Total chemical synthesis and electrophysiological characterization of mechanosensitive channels from Escherichia coli and Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 101, 4764–4769 (2004).
Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).
Faller, M., Niederweis, M. & Schulz, G. E. The structure of a mycobacterial outer-membrane channel. Science 303, 1189–1192 (2004).
Goyal, P. et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516, 250–253 (2014).
Mueller, M., Grauschopf, U., Maier, T., Glockshuber, R. & Ban, N. The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism. Nature 459, 726–730 (2009).
Liang, B. & Tamm, L. K. Structure of outer membrane protein G by solution NMR spectroscopy. Proc. Natl Acad. Sci. USA 104, 16140–16145 (2007).
Cowan, S. W. et al. Crystal structures explain functional properties of two E. coli porins. Nature 358, 727–733 (1992).
Dong, C. et al. Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 444, 226–229 (2006).
Cao, C. et al. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nat. Nanotech. 11, 713–718 (2016).
Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).
Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998).
Haque, F., Geng, J., Montemagno, C. & Guo, P. Incorporation of a viral DNA-packaging motor channel in lipid bilayers for real-time, single-molecule sensing of chemicals and double-stranded DNA. Nat. Protoc. 8, 373–392 (2013).
Dunstone, M. A. & Tweten, R. K. Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Curr. Opin. Struct. Biol. 22, 342–349 (2012).
Laszlo, A. H. et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc. Natl Acad. Sci. USA 110, 18904–18909 (2013).
Bayley, H. & Cremer, P. S. Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).
Braha, O. et al. Designed protein pores as components for biosensors. Chem. Biol. 4, 497–505 (1997).
Gu, L. Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999).
Gu, L. Q., Cheley, S. & Bayley, H. Capture of a single molecule in a nanocavity. Science 291, 636–640 (2001).
Kang, X. F., Cheley, S., Guan, X. & Bayley, H. Stochastic detection of enantiomers. J. Am. Chem. Soc. 128, 10684–10685 (2006).
Howorka, S., Cheley, S. & Bayley, H. Sequence-specific detection of individual DNA-strands using engineered nanopores. Nat. Biotechnol. 19, 636–639 (2001).
Rotem, D., Jayasinghe, L., Salichou, M. & Bayley, H. Protein detection by nanopores equipped with aptamers. J. Am. Chem. Soc. 134, 2781–2787 (2012).
Howorka, S. et al. A protein pore with a single polymer chain tethered within the lumen. J. Am. Chem. Soc. 122, 2411–2416 (2000).
Movileanu, L., Howorka, S., Braha, O. & Bayley, H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 18, 1091–1095 (2000).
Loudwig, S. & Bayley, H. Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength. J. Am. Chem. Soc. 128, 12404–12405 (2006).
Lu, S., Li, W. W., Rotem, D., Mikhailova, E. & Bayley, H. A primary hydrogen–deuterium isotope effect observed at the single-molecule level. Nat. Chem. 2, 921–928 (2010).
Shin, S. H., Steffensen, M. B., Claridge, T. D. & Bayley, H. Formation of a chiral center and pyramidal inversion at the single-molecule level. Angew. Chem. Int. Ed. 46, 7412–7416 (2007).
Pulcu, G. S., Mikhailova, E., Choi, L. S. & Bayley, H. Continuous observation of the stochastic motion of an individual small-molecule walker. Nat. Nanotech. 10, 76–83 (2015).
Maglia, G., Restrepo, M. R., Mikhailova, E. & Bayley, H. Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge. Proc. Natl Acad. Sci. USA 105, 19720–19725 (2008).
Kocer, A., Walko, M., Meijberg, W. & Feringa, B. L. A light-actuated nanovalve derived from a channel protein. Science 309, 755–758 (2005).
Jung, Y., Bayley, H. & Movileanu, L. Temperature-responsive protein pores. J. Am. Chem. Soc. 128, 15332–15340 (2006).
Maglia, G. et al. Droplet networks with incorporated protein diodes show collective properties. Nat. Nanotech. 4, 437–440 (2009).
Miedema, H. et al. A biological porin engineered into a molecular, nanofluidic diode. Nano Lett. 7, 2886–2891 (2007).
Bondalapati, S., Jbara, M. & Brik, A. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat. Chem. 8, 407–418 (2016).
Stoddart, D. et al. Functional truncated membrane pores. Proc. Natl Acad. Sci. USA 111, 2425–2430 (2014).
Reimer, J. M., Aloise, M. N., Harrison, P. M. & Schmeing, T. M. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529, 239–242 (2016).
Montenegro, J., Ghadiri, M. R. & Granja, J. R. Ion channel models based on self-assembling cyclic peptide nanotubes. Acc. Chem. Res. 46, 2955–2965 (2013).
Ketchem, R. R., Hu, W. & Cross, T. A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261, 1457–1460 (1993).
Cifu, A. S., Koeppe, R. E. II & Andersen, O. S. On the supramolecular organization of gramicidin channels. The elementary conducting unit is a dimer. Biophys. J. 61, 189–203 (1992).
Inoue, M. et al. Total synthesis of the large non-ribosomal peptide polytheonamide B. Nat. Chem. 2, 280–285 (2010).
Leitgeb, B., Szekeres, A., Manczinger, L., Vagvolgyi, C. & Kredics, L. The history of alamethicin: a review of the most extensively studied peptaibol. Chem. Biodivers. 4, 1027–1051 (2007).
Pieta, P., Mirza, J. & Lipkowski, J. Direct visualization of the alamethicin pore formed in a planar phospholipid matrix. Proc. Natl Acad. Sci. USA 109, 21223–21227 (2012).
Mayer, M., Kriebel, J. K., Tosteson, M. T. & Whitesides, G. M. Microfabricated teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. Biophys. J. 85, 2684–2695 (2003).
Fjell, C. D., Hiss, J. A., Hancock, R. E. & Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug. Discov. 11, 37–51 (2012).
Cornell, B. A. et al. A biosensor that uses ion-channel switches. Nature 387, 580–583 (1997).
Macrae, M. X. et al. A semi-synthetic ion channel platform for detection of phosphatase and protease activity. ACS Nano 3, 3567–3580 (2009).
Mayer, M., Semetey, V., Gitlin, I., Yang, J. & Whitesides, G. M. Using ion channel-forming peptides to quantify protein-ligand interactions. J. Am. Chem. Soc. 130, 1453–1465 (2008).
Sakai, N., Mareda, J. & Matile, S. Artificial β-barrels. Acc. Chem. Res. 41, 1354–1365 (2008).
Thomson, A. R. et al. Computational design of water-soluble α-helical barrels. Science 346, 485–488 (2014).
Joh, N. H. et al. De novo design of a transmembrane Zn2+-transporting four-helix bundle. Science 346, 1520–1524 (2014).
Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012).
Burns, J., Stulz, E. & Howorka, S. Self-assembled DNA nanopores that span lipid bilayers. Nano Lett. 13, 2351–2356 (2013).
Howorka, S. Changing of the guard. Science 352, 890–891 (2016).
Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).
Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
Chen, Y. J., Groves, B., Muscat, R. A. & Seelig, G. DNA nanotechnology from the test tube to the cell. Nat. Nanotech. 10, 748–760 (2015).
Pinheiro, A. V., Han, D., Shih, W. M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotech. 6, 763–772 (2011).
Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).
Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).
Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).
Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).
Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotech. 10, 779–784 (2015).
Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015).
Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).
Burns, J. R., Al-Juffali, N., Janes, S. M. & Howorka, S. Membrane-spanning DNA nanopores with cytotoxic effect. Angew. Chem. Int. Ed. 53, 12466–12470 (2014).
Burns, J. R. et al. Lipid bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor. Angew. Chem. Int. Ed. 52, 12069–12072 (2013).
Gopfrich, K. et al. DNA-tile structures induce ionic currents through lipid membranes. Nano Lett. 15, 3134–3138 (2015).
Gopfrich, K. et al. Large-conductance transmembrane porin made from DNA origami. ACS Nano 10, 8207–8214 (2016).
Krishnan, S. et al. Molecular transport through large-diameter DNA nanopores. Nat. Commun. 7, 12787 (2016).
Seifert, A. et al. Bilayer-spanning DNA nanopores with voltage-switching between open and closed state. ACS Nano 9, 1117–1126 (2015).
Bell, N. A. et al. DNA origami nanopores. Nano Lett. 12, 512–517 (2012).
Wei, R., Martin, T. G., Rant, U. & Dietz, H. DNA origami gatekeepers for solid-state nanopores. Angew. Chem. Int. Ed. 51, 4864–4867 (2012).
Czogalla, A. et al. Amphipathic DNA origami nanoparticles to scaffold and deform lipid membrane vesicles. Angew. Chem. Int. Ed. 54, 6501–6505 (2015).
Kocabey, S. et al. Membrane-assisted growth of DNA origami nanostructure arrays. ACS Nano 9, 3530–3539 (2015).
Johnson-Buck, A., Jiang, S., Yan, H. & Walter, N. G. DNA-cholesterol barges as programmable membrane-exploring agents. ACS Nano 8, 5641–5649 (2014).
Yang, Y. et al. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8, 476–483 (2016).
Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).
Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).
Villar, G., Graham, A. D. & Bayley, H. A tissue-like printed material. Science 340, 48–52 (2013).
Maingi, V., Lelimousin, M., Howorka, S. & Sansom, M. S. Gating-like motions and wall porosity in a DNA nanopore scaffold revealed by molecular simulations. ACS Nano 9, 11209–11217 (2015).
Yoo, J. & Aksimentiev, A. Molecular dynamics of membrane-spanning DNA channels: conductance mechanism, electro-osmotic transport, and mechanical gating. J. Phys. Chem. Lett. 6, 4680–4687 (2015).
Maingi, V. et al. Stability and dynamics of membrane-spanning DNA nanopores. Nat. Commun. 8, 14784 (2017).
Gopfrich, K. et al. Ion channels made from a single membrane-spanning DNA duplex. Nano Lett. 16, 4665–4669 (2016).
Ackermann, D. & Famulok, M. Pseudo-complementary PNA actuators as reversible switches in dynamic DNA nanotechnology. Nucleic Acids Res. 41, 4729–4739 (2013).
Edwardson, T. G., Carneiro, K. M., McLaughlin, C. K., Serpell, C. J. & Sleiman, H. F. Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly. Nat. Chem. 5, 868–875 (2013).
Chui, J. K. & Fyles, T. M. Ionic conductance of synthetic channels: analysis, lessons, and recommendations. Chem. Soc. Rev. 41, 148–175 (2012).
Sakaki, Y., Mareda, J. & Matile, S. Ion channels and pores, made from scratch. Mol. Biosys. 3, 658–666 (2007).
Barboiu, M. & Gilles, A. From natural to bioassisted and biomimetic artificial water channel systems. Acc. Chem. Res. 46, 2814–2823 (2013).
Geng, J. et al. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514, 612–615 (2014).
Negin, S., Daschbach, M. M., Kulikov, O. V., Rath, N. & Gokel, G. W. Pore formation in phospholipid bilayers by branched-chain pyrogallol[4]arenes. J. Am. Chem. Soc. 133, 3234–3237 (2011).
Das, R. N., Kumar, Y. P., Schutte, O. M., Steinem, C. & Dash, J. A DNA-inspired synthetic ion channel based on G–C base pairing. J. Am. Chem. Soc. 137, 34–37 (2015).
Fyles, T. M. How do amphiphiles form ion-conducting channels in membranes? Lessons from linear oligoesters. Acc. Chem. Res. 46, 2847–2855 (2013).
Meillon, J. C. & Voyer, N. A synthetic transmembrane channel active in lipid bilayers. Angew. Chem. Int. Ed. 36, 967–969 (1997).
Gilles, A. & Barboiu, M. Highly selective artificial K+ channels: an example of selectivity-induced transmembrane potential. J. Am. Chem. Soc. 138, 426–432 (2016).
Kumaki, J. et al. AFM snapshots of synthetic multifunctional pores with polyacetylene blockers: pseudorotaxanes and template effects. Angew. Chem. Int. Ed. 44, 6154–6157 (2005).
Talukdar, P., Bollot, G., Mareda, J., Sakai, N. & Matile, S. Synthetic ion channels with rigid-rod π-stack architecture that open in response to charge-transfer complex formation. J. Am. Chem. Soc. 127, 6528–6529 (2005).
Shen, Y. X. et al. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. Proc. Natl Acad. Sci. USA 112, 9810–9815 (2015).
Liu, H. et al. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327, 64–67 (2010).
Tunuguntla, R. H., Allen, F. I., Kim, K., Belliveau, A. & Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotech. 11, 639–644 (2016).
Lang, C. et al. Biomimetic transmembrane channels with high stability and transporting efficiency from helically folded macromolecules. Angew. Chem. Int. Ed. 55, 9723–9727 (2016).
Bhosale, S. et al. Photoproduction of proton gradients with pi-stacked fluorophore scaffolds in lipid bilayers. Science 313, 84–86 (2006).
Hall, A. R. et al. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nat. Nanotech. 5, 874–877 (2010).
Mantri, S., Sapra, K. T., Cheley, S., Sharp, T. H. & Bayley, H. An engineered dimeric protein pore that spans adjacent lipid bilayers. Nat. Commun. 4, 1725 (2013).
Burton, A. J., Thomson, A. R., Dawson, W. M., Brady, R. L. & Woolfson, D. N. Installing hydrolytic activity into a completely de novo protein framework. Nat. Chem. 8, 837–844 (2016).
Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).
Franceschini, L., Soskine, M., Biesemans, A. & Maglia, G. A nanopore machine promotes the vectorial transport of DNA across membranes. Nat. Commun. 4, 2415 (2013).
Watson, M. A. & Cockroft, S. L. Man-made molecular machines: membrane bound. Chem. Soc. Rev. 45, 6118–6129 (2016).
Nivala, J., Marks, D. B. & Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 31, 247–250 (2013).
Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).
Bakelar, J., Buchanan, S. K. & Noinaj, N. The structure of the β-barrel assembly machinery complex. Science 351, 180–186 (2016).
Blake, S., Capone, R., Mayer, M. & Yang, J. Chemically reactive derivatives of gramicidin A for developing ion channel-based nanoprobes. Bioconj. Chem. 19, 1614–1624 (2008).
Hendrickson, W. A. Atomic-level analysis of membrane-protein structure. Nat. Struct. Mol. Biol. 23, 464–467 (2016).
Williams, J. K., Tietze, D., Lee, M., Wang, J. & Hong, M. Solid-state NMR investigation of the conformation, proton conduction, and hydration of the influenza B virus M2 transmembrane proton channel. J. Am. Chem. Soc. 138, 8143–8155 (2016).
Hodel, A. W., Leung, C., Dudkina, N. V., Saibil, H. R. & Hoogenboom, B. W. Atomic force microscopy of membrane pore formation by cholesterol dependent cytolysins. Curr. Opin. Struct. Biol. 39, 8–15 (2016).
Zhu, R. et al. Nanopharmacological force sensing to reveal allosteric coupling in transporter binding sites. Angew. Chem. Int. Ed. 55, 1719–1722 (2016).
Krasilnikov, O. V., Rodrigues, C. G. & Bezrukov, S. M. Single polymer molecules in a protein nanopore in the limit of a strong polymer–pore attraction. Phys. Rev. Lett. 97, 018301 (2006).
Merzlyak, P. G., Capistrano, M. F. P., Valeva, A., Kasianowicz, J. J. & Krasilnikov, O. V. Conductance and ion selectivity of a mesoscopic protein nanopore probed with cysteine scanning mutagenesis. Biophys. J. 89, 3059–3070 (2005).
Huang, S., Romero-Ruiz, M., Castell, O. K., Bayley, H. & Wallace, M. I. High-throughput optical sensing of nucleic acids in a nanopore array. Nat. Nanotech. 10, 986–991 (2015).
Andersen, O. S. & Koeppe, R. E. II Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130 (2007).
Saliba, A. E., Vonkova, I. & Gavin, A. C. The systematic analysis of protein-lipid interactions comes of age. Nat. Rev. Mol. Cell. Biol. 16, 753–761 (2015).
Miles, A. J. & Wallace, B. A. Circular dichroism spectroscopy of membrane proteins. Chem. Soc. Rev. 45, 4859–4872 (2016).
Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014).
Maffeo, C., Bhattacharya, S., Yoo, J., Wells, D. & Aksimentiev, A. Modeling and simulation of ion channels. Chem. Rev. 112, 6250–6284 (2012).
Stansfeld, P. J. et al. MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure 23, 1350–1361 (2015).
Acknowledgements
I thank J. R. Burns for rendering and producing DNA pore images, A. Hodel for providing membrane particle system, K. Ahmad and J. Donnelly for help with peptide images, R. Morgan and Z. Siwy for critically reading the manuscript. Supported by UK Engineering and Physical Sciences Research Council grant EP/N009282/1 and Biotechnology and Biological Sciences Research Council grants BB/M025373/1 and BB/N017331/1, the Leverhulme Trust research grant RPG-2017-015 and Oxford Nanopore Technologies.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The research group of S.H. receives funding from Oxford Nanopore Technologies.
Rights and permissions
About this article
Cite this article
Howorka, S. Building membrane nanopores. Nature Nanotech 12, 619–630 (2017). https://doi.org/10.1038/nnano.2017.99
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2017.99
This article is cited by
-
In vivo therapy of osteosarcoma using anion transporters-based supramolecular drugs
Journal of Nanobiotechnology (2024)
-
Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics
Nature Chemistry (2024)
-
A lumen-tunable triangular DNA nanopore for molecular sensing and cross-membrane transport
Nature Communications (2024)
-
A non-B DNA binding peptidomimetic channel alters cellular functions
Nature Communications (2024)
-
Application of zinc oxide nano-tube as drug-delivery vehicles of anticancer drug
Journal of Molecular Modeling (2023)