Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Energy-dependent path of dissipation in nanomechanical resonators

Abstract

Energy decay plays a central role in a wide range of phenomena1,2,3, such as optical emission, nuclear fission, and dissipation in quantum systems. Energy decay is usually described as a system leaking energy irreversibly into an environmental bath. Here, we report on energy decay measurements in nanomechanical systems based on multilayer graphene that cannot be explained by the paradigm of a system directly coupled to a bath. As the energy of a vibrational mode freely decays, the rate of energy decay changes abruptly to a lower value. This finding can be explained by a model where the measured mode hybridizes with other modes of the resonator at high energy. Below a threshold energy, modes are decoupled, resulting in comparatively low decay rates and giant quality factors exceeding 1 million. Our work opens up new possibilities to manipulate vibrational states4,5,6,7, engineer hybrid states with mechanical modes at completely different frequencies, and to study the collective motion of this highly tunable system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nonlinear energy decay process, mode hybridization and graphene resonator.
Figure 2: Energy decay measurements of a graphene resonator with a Q-factor of 1 million in the low-vibrational-amplitude regime.
Figure 3: Energy decay in the high-vibrational-amplitude regime.
Figure 4: Driven response and energy decay traces.

Similar content being viewed by others

References

  1. Rayleigh, J. W. Some general theorems relating to vibrations. Proc. London Math. Soc. s1–4, 357–368 (1871).

    Google Scholar 

  2. Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931).

    Article  CAS  Google Scholar 

  3. Caldeira, A. O. & Leggett, A. J. Path integral approach to quantum Brownian motion. Physica 121A, 587–616 (1983).

    Article  Google Scholar 

  4. Faust, T., Rieger, J., Seitner, M. J., Kotthaus, J. P. & Weig, E. M. Coherent control of a classical nanomechanical two-level system. Nat. Phys. 9, 485–488 (2013).

    Article  CAS  Google Scholar 

  5. Okamoto, H. et al. Coherent phonon manipulation in coupled mechanical resonators. Nat. Phys. 9, 480–484 (2013).

    Article  CAS  Google Scholar 

  6. De Alba, R. et al. Tunable phonon–cavity coupling in graphene membranes. Nat. Nanotech. 11, 741–746 (2016).

    Article  CAS  Google Scholar 

  7. Mathew, J. P., Patel, R. N., Borah, A., Vijay, R. & Deshmukh, M. M. Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums. Nat. Nanotech. 11, 747–751 (2016).

    Article  CAS  Google Scholar 

  8. Gao, J., Zmuidzinas, J., Mazin, B. A., LeDuc, H. G. & Day, P. K. Noise properties of superconducting coplanar waveguide microwave resonators. Appl. Phys. Lett. 90, 102507 (2007).

    Article  Google Scholar 

  9. Eichler, A. et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotech. 6, 339–342 (2011).

    Article  CAS  Google Scholar 

  10. Zaitsev, S., Shtempluck, O., Buks, E. & Gottlieb, O. Nonlinear damping in a micromechanical oscillator. Nonlinear Dynamics 67, 859–883 (2012).

    Article  Google Scholar 

  11. Imboden, M., Williams, O. A. & Mohanty, P. Observation of nonlinear dissipation in piezoresistive diamond nanomechanical resonators by heterodyne down-mixing. Nano Lett. 13, 4014–4019 (2013).

    Article  CAS  Google Scholar 

  12. Mahboob, I. et al. Dispersive and dissipative coupling in a micromechanical resonator embedded with a nanomechanical resonator. Nano Lett. 15, 2312–2317 (2015).

    Article  CAS  Google Scholar 

  13. Polunin, P. M., Yang, Y., Dykman, M. I., Kenny, T. W. & Shaw, S. W. Characterization of MEMS resonator nonlinearities using the ringdown response. J. Microelectromech. Sys. 25, 297–303 (2016).

    Article  CAS  Google Scholar 

  14. Dykman, M. I. & Krivoglaz, M. A. Theory of nonlinear oscillator interacting with a medium. Sov. Phys. Rev. 5, 265–442 (1984).

    Google Scholar 

  15. Wilson-Rae, I. Intrinsic dissipation in nanomechanical resonators due to phonon tunneling. Phys. Rev. B 77, 245418 (2008).

    Article  Google Scholar 

  16. Rieger, J., Isacsson, A., Seitner, M. J., Kotthaus, J. P. & Weig, E. M. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching. Nat. Commun. 5, 3345 (2014).

    Article  Google Scholar 

  17. Tao, Y., Boss, J. M., Moores, B. A. & Degen, C. L. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. 5, 3638 (2014).

    Article  CAS  Google Scholar 

  18. Midtvedt, D., Croy, A., Isacsson, A., Qi, Z. & Park, H. Fermi-Pasta-Ulam physics with nanomechanical graphene resonators: intrinsic relaxation and thermalization from flexural mode coupling. Phys. Rev. Lett. 112, 145503 (2014).

    Article  Google Scholar 

  19. Gil-Santos, E. et al. Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat. Nanotech. 5, 641–645 (2010).

    Article  CAS  Google Scholar 

  20. Hanay, M. S. et al. Single-protein nanomechanical mass spectrometry in real time. Nat. Nanotech. 7, 602–608 (2012).

    Article  CAS  Google Scholar 

  21. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotech. 7, 301–304 (2012).

    Article  CAS  Google Scholar 

  22. Moser, J., Eichler, A., Güttinger, J., Dykman, M. I. & Bachtold, A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotech. 9, 1007–1011 (2014).

    Article  CAS  Google Scholar 

  23. Antonio, D., Zanette, D. H. & Lopez, D. Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012).

    Article  Google Scholar 

  24. Eichler, A., del Álamo Ruiz, M., Plaza, J. A. & Bachtold, A. Strong coupling between mechanical modes in a nanotube resonator. Phys. Rev. Lett. 109, 025503 (2012).

    Article  CAS  Google Scholar 

  25. Chen, C. et al. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotech. 4, 861–867 (2009).

    Article  CAS  Google Scholar 

  26. Singh, V. et al. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology 21, 165204 (2010).

    Article  Google Scholar 

  27. Barton, R. A. et al. Photothermal self-oscillation and laser cooling of graphene optomechanical systems. Nano Lett. 12, 4681–4686 (2012).

    Article  CAS  Google Scholar 

  28. Miao, T., Yeom, S., Wang, P., Standley, B. & Bockrath, M. Graphene nanoelectromechanical systems as stochastic-frequency oscillators. Nano Lett. 14, 2982–2987 (2014).

    Article  CAS  Google Scholar 

  29. Weber, P., Güttinger, J., Tsioutsios, I., Chang, D. E. & Bachtold, A. Coupling graphene mechanical resonators to superconducting microwave cavities. Nano Lett. 14, 2854–2860 (2014).

    Article  CAS  Google Scholar 

  30. Song, X., Oksanen, M., Li, J., Hakonen, P. J. & Sillanpää, M. A. Graphene optomechanics realized at microwave frequencies. Phys. Rev. Lett. 113, 027404 (2014).

    Article  CAS  Google Scholar 

  31. Singh, V. et al. Optomechanical coupling between a graphene mechanical resonator and a superconducting microwave cavity. Nat. Nanotech. 9, 820–824 (2014).

    Article  CAS  Google Scholar 

  32. Weber, P., Güttinger, J., Noury, A., Vergara-Cruz, J. & Bachtold, A. Force sensitivity of multilayer graphene optomechanical devices. Nat. Commun. 7, 12496 (2016).

    Article  CAS  Google Scholar 

  33. Eichler, C., Salathe, Y., Mlynek, J., Schmidt, S. & Wallraff, A. Quantum-limited amplification and entanglement in coupled nonlinear resonators. Phys. Rev. Lett. 113, 110502 (2014).

    Article  CAS  Google Scholar 

  34. Lifshitz, R. & Cross, M. Nonlinear dynamics of nanomechanical and micromechanical resonators. Rev. Nonlinear Dyn. Complex. 1, 1–48 (2008).

    Google Scholar 

  35. Seoánez, C., Guinea, F. & Castro Neto, A. H. Dissipation in graphene and nanotube resonators. Phys. Rev. B 76, 125427 (2007).

    Article  Google Scholar 

  36. Eriksson, A. M., Midtvedt, D., Croy, A. & Isacsson, A. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators. Nanotechnology 24, 395702 (2013).

    Article  CAS  Google Scholar 

  37. Benyamini, A., Hamo, A., Kusminskiy, S. V., von Oppen, F. & Ilani, S. Real-space tailoring of the electron–phonon coupling in ultraclean nanotube mechanical resonators. Nat. Phys. 10, 151–156 (2014).

    Article  CAS  Google Scholar 

  38. Shoshani, O., Shaw, S. W. & Dykman, M. I. Anomalous dissipation of nanomechanical modes going through nonlinear resonance. Preprint at https://arxiv.org/abs/1702.00769 (2017).

Download references

Acknowledgements

We thank M. Dykman, S. Shaw, D. Lopez, F. Guinea and N. Noury for discussions. We acknowledge G. Ceballos and the ICFO mechanical and electronic workshop for support. We acknowledge financial support by the ERC starting grant 279278 (CarbonNEMS), the EU Graphene Flagship (contract no. 604391), the Foundation Cellex, Severo Ochoa (SEV-2015-0522) and grant MAT2012-31338 of MINECO, the Fondo Europeo de Desarrollo Regional (FEDER), and the Generalitat through AGAUR. A.I. and A.M.E. acknowledge financial support through the Swedish Research Council and the Knut and Alice Wallenberg foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.W. fabricated the devices. J.G., A.N. and P.W. carried out the experiment with support from C.L. and J.M. Theoretical modelling and simulations were done by A.M.E. and A.I. The JPA was provided by C.E. and A.W. The data analysis was done by J.G., A.N., P.W., A.M.E., A.I. and A.B. J.G., A.I. and A.B. wrote the manuscript with comments from the other authors. A.B. supervised the work.

Corresponding author

Correspondence to Adrian Bachtold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1105 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güttinger, J., Noury, A., Weber, P. et al. Energy-dependent path of dissipation in nanomechanical resonators. Nature Nanotech 12, 631–636 (2017). https://doi.org/10.1038/nnano.2017.86

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.86

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research