Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A solid-state single-photon filter

Abstract

A strong limitation of linear optical quantum computing is the probabilistic operation of two-quantum-bit gates based on the coalescence of indistinguishable photons. A route to deterministic operation is to exploit the single-photon nonlinearity of an atomic transition. Through engineering of the atom–photon interaction, phase shifters, photon filters and photon–photon gates have been demonstrated with natural atoms. Proofs of concept have been reported with semiconductor quantum dots, yet limited by inefficient atom–photon interfaces and dephasing. Here, we report a highly efficient single-photon filter based on a large optical nonlinearity at the single-photon level, in a near-optimal quantum-dot cavity interface. When probed with coherent light wavepackets, the device shows a record nonlinearity threshold around 0.3 ± 0.1 incident photons. We demonstrate that 80% of the directly reflected light intensity consists of a single-photon Fock state and that the two- and three-photon components are strongly suppressed compared with the single-photon one.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design and characteristics of device 1.
Figure 2: Single photon nonlinearity and second-order correlation measurements.
Figure 3: Single-photon filtering.
Figure 4: Multi-photon state suppression.

Similar content being viewed by others

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  CAS  Google Scholar 

  2. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  CAS  Google Scholar 

  3. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  CAS  Google Scholar 

  4. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Article  CAS  Google Scholar 

  5. Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    Article  CAS  Google Scholar 

  6. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    Article  CAS  Google Scholar 

  7. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article  CAS  Google Scholar 

  8. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  Google Scholar 

  9. Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    Article  CAS  Google Scholar 

  10. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  CAS  Google Scholar 

  11. Halder, M. et al. Entangling independent photons by time measurement. Nat. Phys. 3, 692–695 (2007).

    Article  CAS  Google Scholar 

  12. O'Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2003).

    Article  CAS  Google Scholar 

  13. Franson, J. D., Jacobs, B. C. & Pittman, T. B. Quantum computing using single photons and the zeno effect. Phys. Rev. A 70, 062302 (2004).

    Article  Google Scholar 

  14. Nemoto, K. & Munro, W. J. Nearly deterministic linear optical controlled-not gate. Phys. Rev. Lett. 93, 250502 (2004).

    Article  Google Scholar 

  15. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    Article  CAS  Google Scholar 

  16. Chang, D. E., Vuletic, V. & Lukin, M. D. Quantum nonlinear optics — photon by photon. Nat. Photon. 8, 685–694 (2014).

    Article  CAS  Google Scholar 

  17. Hu, C. Y., Munro, W. J. & Rarity, J. G. Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008).

    Article  Google Scholar 

  18. Bonato, C. et al. CNOT and bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010).

    Article  Google Scholar 

  19. Rosenblum, S., Parkins, S. & Dayan, B. Photon routing in cavity QED: beyond the fundamental limit of photon blockade. Phys. Rev. A 84, 033854 (2011).

    Article  Google Scholar 

  20. Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

    Article  CAS  Google Scholar 

  21. Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

    Article  CAS  Google Scholar 

  22. Dayan, B. et al. A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008).

    Article  CAS  Google Scholar 

  23. Rosenblum, S. et al. Extraction of a single photon from an optical pulse. Nat. Photon. 10, 19–22 (2016).

    Article  CAS  Google Scholar 

  24. Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013).

    Article  CAS  Google Scholar 

  25. Hacker, B., Welte, S., Rempe, G. & Ritter, S. A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016).

    Article  CAS  Google Scholar 

  26. Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014).

    Article  CAS  Google Scholar 

  27. Loo, V. et al. Optical nonlinearity for few-photon pulses on a quantum dot-pillar cavity device. Phys. Rev. Lett. 109, 166806 (2012).

    Article  CAS  Google Scholar 

  28. Reinhard, A. et al. Strongly correlated photons on a chip. Nat. Photon. 6, 93–96 (2012).

    Article  CAS  Google Scholar 

  29. Javadi, A. et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015).

    Article  CAS  Google Scholar 

  30. Rundquist, A. et al. Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity. Phys. Rev. A 90, 023846 (2014).

    Article  Google Scholar 

  31. Bennett, A. J. et al. A semiconductor photon-sorter. Nat. Nanotech. 11, 857–860 (2016).

    Article  CAS  Google Scholar 

  32. Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).

    Article  Google Scholar 

  33. Kim, H., Bose, R., Shen, T. C., Solomon, G. S. & Waks, E. A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photon. 7, 373–377 (2013).

    Article  Google Scholar 

  34. Sun, S., Kim, H., Solomon, G. S. & Waks, E. A quantum phase switch between a single solid-state spin and a photon. Nat. Nanotech. 11, 539–544 (2016).

    Article  CAS  Google Scholar 

  35. Müller, K. et al. Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett. 114, 233601 (2015).

    Article  Google Scholar 

  36. Snijders, H. et al. Purification of a single-photon nonlinearity. Nat. Commun. 7, 12578 (2016).

    Article  CAS  Google Scholar 

  37. Dousse, A. et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett. 101, 267404 (2008).

    Article  CAS  Google Scholar 

  38. Nowak, A. K. et al. Deterministic and electrically tunable bright single-photon source. Nat. Commun. 5, 3240 (2014).

    Article  CAS  Google Scholar 

  39. Giesz, V. et al. Coherent manipulation of a solid-state artificial atom with few photons. Nat. Commun. 7, 11986 (2016).

    Article  CAS  Google Scholar 

  40. Bourgain, R., Pellegrino, J., Jennewein, S., Sortais, Y. R. P. & Browaeys, A. Direct measurement of the Wigner time delay for the scattering of light by a single atom. Opt. Lett. 38, 1963–1965 (2013).

    Article  CAS  Google Scholar 

  41. Goldschmidt, E. A. et al. Mode reconstruction of a light field by multiphoton statistics. Phys. Rev. A 88, 013822 (2013).

    Article  Google Scholar 

  42. Stevens, M. J., Glancy, S., Nam, S. W. & Mirin, R. P. Third-order antibunching from an imperfect single-photon source. Opt. Express 22, 3244–3260 (2014).

    Article  Google Scholar 

  43. Arnold, C. et al. Macroscopic rotation of photon polarization induced by a single spin. Nat. Commun. 6, 6236 (2015).

    Article  Google Scholar 

  44. Prechtel, J. H. et al. Decoupling a hole spin qubit from the nuclear spins. Nat. Mater. 15, 981–986 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the ERC Starting Grant No. 277885 QD-CQED, the French Agence Nationale pour la Recherche (grant ANR SPIQE and USSEPP), the French RENATECH network, a public grant overseen by the French National Research Agency (ANR) as part of the ‘Investissements d'Avenir’ programme (Labex NanoSaclay, reference: ANR-10-LABX-0035), the ARC Centres for Engineered Quantum Systems (grant CE110001013), and Quantum Computation and Communication Technology (grant CE110001027), and the Asian Office of Aerospace Research and Development (grant FA2386-13-1-4070). C.A. acknowledges support from the Marie Skłodowska-Curie Individual Fellowship SQUAPH. A.G.W. acknowledges support from a University of Queensland Vice-Chancellor's Research and Teaching Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were conducted by L.d.S with help from N.S., C.A. and G.C. and suggestions from A.G.W. Data analysis was done by L.d.S., C.A. and J.S. The cavity devices were fabricated by N.S. from samples grown by A.L. and C.G. Etching was done by I.S. The theory was developed by B.R. under the supervision of A.A. with help from L.L. All authors participated in scientific discussions and manuscript preparation. This project was supervised by L.L., A.A. and P.S.

Corresponding authors

Correspondence to Alexia Auffèves or Pascale Senellart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Santis, L., Antón, C., Reznychenko, B. et al. A solid-state single-photon filter. Nature Nanotech 12, 663–667 (2017). https://doi.org/10.1038/nnano.2017.85

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.85

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing