Abstract
Graphene and other two-dimensional materials offer a new approach to controlling mass transport at the nanoscale. These materials can sustain nanoscale pores in their rigid lattices and due to their minimum possible material thickness, high mechanical strength and chemical robustness, they could be used to address persistent challenges in membrane separations. Here we discuss theoretical and experimental developments in the emerging field of nanoporous atomically thin membranes, focusing on the fundamental mechanisms of gas- and liquid-phase transport, membrane fabrication techniques and advances towards practical application. We highlight potential functional characteristics of the membranes and discuss applications where they are expected to offer advantages. Finally, we outline the major scientific questions and technological challenges that need to be addressed to bridge the gap from theoretical simulations and proof-of-concept experiments to real-world applications.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving
Nature Communications Open Access 10 July 2023
-
2D nanochannels and huge specific surface area offer unique ways for water remediation and adsorption: assessing the strengths of hexagonal boron nitride in separation technology
Functional Composite Materials Open Access 24 April 2023
-
Pyro-layered heterostructured nanosheet membrane for hydrogen separation
Nature Communications Open Access 15 April 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Baker, R. W. & Low, B. T. Gas separation membrane materials: a perspective. Macromolecules 47, 6999–7013 (2014).
Baker, R. W. Membrane Technology and Applications (John Wiley & Sons, 2004).
Buonomenna, M. G. Membrane processes for a sustainable industrial growth. RSC Adv. 3, 5694–5740 (2013).
Wang, Y., Chen, K. S., Mishler, J., Cho, S. C. & Adroher, X. C. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011).
Geise, G. M. et al. Water purification by membranes: the role of polymer science. J. Polym. Sci., Polym. Phys. 48, 1685–1718 (2010).
Mohammad, A. W., Ng, C. Y., Lim, Y. P. & Ng, G. H. Ultrafiltration in food processing industry: review on application, membrane fouling, and fouling control. Food Bioprocess Technol. 5, 1143–1156 (2012).
van Reis, R. & Zydney, A. Bioprocess membrane technology. J. Membrane Sci. 297, 16–50 (2007).
Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. & Moulin, P. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res. 43, 2317–2348 (2009).
Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).
Malaeb, L. & Ayoub, G. M. Reverse osmosis technology for water treatment: state of the art review. Desalination 267, 1–8 (2011).
Baker, R. W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002).
Stamatialis, D. F. et al. Medical applications of membranes: drug delivery, artificial organs and tissue engineering. J. Membrane Sci. 308, 1–34 (2008).
Marchetti, P., Jimenez Solomon, M. F., Szekely, G. & Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114, 10735–10806 (2014).
Takht Ravanchi, M., Kaghazchi, T. & Kargari, A. Application of membrane separation processes in petrochemical industry: a review. Desalination 235, 199–244 (2009).
Pendergast, M. M. & Hoek, E. M. V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4, 1946–1971 (2011).
De Marco, R., Clarke, G. & Pejcic, B. Ion-selective electrode potentiometry in environmental analysis. Electroanalysis 19, 1987–2001 (2007).
Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).
Tavolaro, A. & Drioli, E. Zeolite membranes. Adv. Mater. 11, 975–996 (1999).
Buonomenna, M. G., Yave, W. & Golemme, G. Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes. RSC Adv. 2, 10745–10773 (2012).
Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).
Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).
Anselmetti, D. & Gölzhäuser, A. Converting molecular monolayers into functional membranes. Angew. Chem. Int. Ed. 53, 12300–12302 (2014).
Das, R., Ali, M. E., Hamid, S. B. A., Ramakrishna, S. & Chowdhury, Z. Z. Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014).
Kim, S. & Lee, Y. M. Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 43, 1–32 (2015).
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008). This study experimentally demonstrated the impermeability of pristine graphene.
Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
Chen, Y., Zou, J., Campbell, S. J. & Le Caer, G. Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004).
Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotech. 7, 728–732 (2012). This study experimentally realized molecular sieving across atomically thin membranes.
Zhao, Y. et al. Two-dimensional material membranes: an emerging platform for controllable mass transport applications. Small 10, 4521–4542 (2014).
Aghigh, A. et al. Recent advances in utilization of graphene for filtration and desalination of water: a review. Desalination 365, 389–397 (2015).
Yoon, H. W., Cho, Y. H. & Park, H. B. Graphene-based membranes: status and prospects. Philos. Trans. R. Soc. A 374, 20150024 (2016).
Mahmoud, K. A., Mansoor, B., Mansour, A. & Khraisheh, M. Functional graphene nanosheets: the next generation membranes for water desalination. Desalination 356, 208–225 (2015).
Sun, C., Wen, B. & Bai, B. Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci. Bull. 60, 1807–1823 (2015).
Huang, L., Zhang, M., Li, C. & Shi, G. Graphene-based membranes for molecular separation. J. Phys. Chem. Lett. 6, 2806–2815 (2015).
Sun, P., Wang, K. & Zhu, H. Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv. Mater. 28, 2287–2310 (2016).
Cohen-Tanugi, D. & Grossman, J. C. Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation. Desalination 366, 59–70 (2015).
Hegab, H. M. & Zou, L. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J. Membrane Sci. 484, 95–106 (2015).
Liu, G., Jin, W. & Xu, N. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).
Mi, B. Graphene oxide membranes for ionic and molecular sieving. Science 343, 740–742 (2014).
Goh, P. S. & Ismail, A. F. Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology. Desalination 356, 115–128 (2015).
Yampolskii, Y. Polymeric gas separation membranes. Macromolecules 45, 3298–3311 (2012).
Robeson, L. M. The upper bound revisited. J. Membrane Sci. 320, 390–400 (2008).
Freeman, B. D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32, 375–380 (1999).
Bernardo, P., Drioli, E. & Golemme, G. Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48, 4638–4663 (2009).
Celebi, K. et al. Ultimate permeation across atomically thin porous graphene. Science 344, 289–292 (2014). This study demonstrated fabrication of arrays of nanopores in graphene membranes using a focused ion beam to realize high permeance.
Szymczyk, A. & Fievet, P. Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model. J. Membrane Sci. 252, 77–88 (2005).
Jiang, D., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009). This simulation study suggested the potential of nanoporous graphene for gas separation with high selectivity and permeance.
Du, H. et al. Separation of hydrogen and nitrogen gases with porous graphene membrane. J. Phys. Chem. C 115, 23261–23266 (2011).
Schrier, J. Helium separation using porous graphene membranes. J. Phys. Chem. Lett. 1, 2284–2287 (2010).
Blankenburg, S. et al. Porous graphene as an atmospheric nanofilter. Small 6, 2266–2271 (2010).
Huang, C., Wu, H., Deng, K., Tang, W. & Kan, E. Improved permeability and selectivity in porous graphene for hydrogen purification. Phys. Chem. Chem. Phys. 16, 25755–25759 (2014).
Brockway, A. M. & Schrier, J. Noble gas separation using PG-ES X (X = 1, 2, 3) nanoporous two-dimensional polymers. J. Phys. Chem. C 117, 393–402 (2013).
Solvik, K., Weaver, J. A., Brockway, A. M. & Schrier, J. Entropy-driven molecular separations in 2D-nanoporous materials, with application to high-performance paraffin/olefin membrane separations. J. Phys. Chem. C 117, 17050–17057 (2013).
Tao, Y. et al. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation. ACS Appl. Mater. Interfaces 6, 8048–8058 (2014).
Schrier, J. Carbon dioxide separation with a two-dimensional polymer membrane. ACS Appl. Mater. Interfaces 4, 3745–3752 (2012).
Cranford, S. W. & Buehler, M. J. Selective hydrogen purification through graphdiyne under ambient temperature and pressure. Nanoscale 4, 4587–4593 (2012).
Jiao, Y. et al. Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. Chem. Commun. 47, 11843–11845 (2011).
Zhang, H. et al. Tunable hydrogen separation in sp–sp2 hybridized carbon membranes: a first-principles prediction. J. Phys. Chem. C 116, 16634–16638 (2012).
Schrier, J. Fluorinated and nanoporous graphene materials as sorbents for gas separations. ACS Appl. Mater. Interfaces 3, 4451–4458 (2011).
Li, Y., Zhou, Z., Shen, P. & Chen, Z. Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane. Chem. Commun. 46, 3672–3674 (2010).
Schrier, J. & McClain, J. Thermally-driven isotope separation across nanoporous graphene. Chem. Phys. Lett. 521, 118–124 (2012).
Tian, Z., Dai, S. & Jiang, D. Expanded porphyrins as two-dimensional porous membranes for CO2 separation. ACS Appl. Mater. Interfaces 7, 13073–13079 (2015).
Zhang, Y. et al. Hexagonal boron nitride with designed nanopores as a high-efficiency membrane for separating gaseous hydrogen from methane. J. Phys. Chem. C 119, 19826–19831 (2015).
Liu, H., Dai, S. & Jiang, D. Permeance of H2 through porous graphene from molecular dynamics. Solid State Commun. 175–176, 101–105 (2013).
Jiao, Y., Du, A., Hankel, M. & Smith, S. C. Modelling carbon membranes for gas and isotope separation. Phys. Chem. Chem. Phys. 15, 4832–4843 (2013).
Drahushuk, L. W. & Strano, M. S. Mechanisms of gas permeation through single layer graphene membranes. Langmuir 28, 16671–16678 (2012).
Sun, C. et al. Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir 30, 675–682 (2014).
Hauser, A. W. & Schwerdtfeger, P. Nanoporous graphene membranes for efficient 3He/4He separation. J. Phys. Chem. Lett. 3, 209–213 (2012).
Hankel, M., Jiao, Y., Du, A., Gray, S. K. & Smith, S. C. Asymmetrically decorated, doped porous graphene as an effective membrane for hydrogen isotope separation. J. Phys. Chem. C 116, 6672–6676 (2012).
Hu, W., Wu, X., Li, Z. & Yang, J. Porous silicene as a hydrogen purification membrane. Phys. Chem. Chem. Phys. 15, 5753–5757 (2013).
Lalitha, M., Lakshmipathi, S. & Bhatia, S. K. Defect-mediated reduction in barrier for helium tunneling through functionalized graphene nanopores. J. Phys. Chem. C 119, 20940–20948 (2015).
Au, H. Molecular Dynamics Simulation of Nanoporous Graphene for Selective Gas Separation (Massachusetts Institute of Technology, 2012).
Lei, G., Liu, C., Xie, H. & Song, F. Separation of the hydrogen sulfide and methane mixture by the porous graphene membrane: effect of the charges. Chem. Phys. Lett. 599, 127–132 (2014).
Liu, H., Chen, Z., Dai, S. & Jiang, D. Selectivity trend of gas separation through nanoporous graphene. J. Solid State Chem. 224, 2–6 (2015).
Liu, H., Dai, S. & Jiang, D. Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics. Nanoscale 5, 9984–9987 (2013).
Shan, M. et al. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4, 5477–5482 (2012).
Sun, C., Wen, B. & Bai, B. Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation. Chem. Eng. Sci. 138, 616–621 (2015).
Wen, B., Sun, C. & Bai, B. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes. Phys. Chem. Chem. Phys. 17, 23619–23626 (2015).
Wu, T. et al. Fluorine-modified porous graphene as membrane for CO2 /N2 separation: molecular dynamic and first-principles simulations. J. Phys. Chem. C 118, 7369–7376 (2014).
Qin, X., Meng, Q., Feng, Y. & Gao, Y. Graphene with line defect as a membrane for gas separation: design via a first-principles modeling. Surf. Sci. 607, 153–158 (2013).
Hauser, A. W. & Schwerdtfeger, P. Methane-selective nanoporous graphene membranes for gas purification. Phys. Chem. Chem. Phys. 14, 13292–13298 (2012).
Ambrosetti, A. & Silvestrelli, P. L. Gas separation in nanoporous graphene from first principle calculations. J. Phys. Chem. C 118, 19172–19179 (2014).
Lu, R. et al. Prominently improved hydrogen purification and dispersive metal binding for hydrogen storage by substitutional doping in porous graphene. J. Phys. Chem. C 116, 21291–21296 (2012).
Hauser, A. W., Schrier, J. & Schwerdtfeger, P. Helium tunneling through nitrogen-functionalized graphene pores: pressure- and temperature-driven approaches to isotope separation. J. Phys. Chem. C 116, 10819–10827 (2012).
Wang, L. et al. Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene. Nat. Nanotech. 10, 785–790 (2015).
Drahushuk, L. W., Wang, L., Koenig, S. P., Bunch, J. S. & Strano, M. S. Analysis of time-varying, stochastic gas transport through graphene membranes. ACS Nano 10, 786–795 (2016).
Jain, T. et al. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotech. 10, 1053–1057 (2015).
Zhu, C., Li, H., Zeng, X. C., Wang, E. G. & Meng, S. Quantized water transport: ideal desalination through graphyne-4 membrane. Sci. Rep. 3, 3163 (2013).
Xue, M., Qiu, H. & Guo, W. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers. Nanotechnology 24, 505720 (2013).
Bartolomei, M. et al. Penetration barrier of water through graphynes' pores: first-principles predictions and force field optimization. J. Phys. Chem. Lett. 5, 751–755 (2014).
Kou, J., Zhou, X., Lu, H., Wu, F. & Fan, J. Graphyne as the membrane for water desalination. Nanoscale 6, 1865–1870 (2014).
Heiranian, M., Farimani, A. B. & Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015).
Lin, L.-C., Choi, J. & Grossman, J. C. Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chem. Commun. 51, 14921–14924 (2015).
Konatham, D., Yu, J., Ho, T. A. & Striolo, A. Simulation insights for graphene-based water desalination membranes. Langmuir 29, 11884–11897 (2013).
Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012). This molecular dynamics study showed the potential of graphene for water desalination with high salt rejection and high permeance.
Li, W., Yang, Y., Weber, J. K., Zhang, G. & Zhou, R. Tunable, strain-controlled nanoporous MoS2 filter for water desalination. ACS Nano 10, 1829–1835 (2016).
Cohen-Tanugi, D. & Grossman, J. C. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. J. Chem. Phys. 141, 074704 (2014).
Azamat, J., Khataee, A. & Joo, S. W. Molecular dynamics simulation of trihalomethanes separation from water by functionalized nanoporous graphene under induced pressure. Chem. Eng. Sci. 127, 285–292 (2015).
Suk, M. E. & Aluru, N. R. Water transport through ultrathin graphene. J. Phys. Chem. Lett. 1, 1590–1594 (2010).
Lin, S. & Buehler, M. J. Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification. Nanoscale 5, 11801–11807 (2013).
Suk, M. E. & Aluru, N. R. Molecular and continuum hydrodynamics in graphene nanopores. RSC Adv. 3, 9365–9372 (2013).
Song, Z. & Xu, Z. Ultimate osmosis engineered by the pore geometry and functionalization of carbon nanostructures. Sci. Rep. 5, 10597 (2015).
Zhang, X. & Gai, J.-G. Single-layer graphyne membranes for super-excellent brine separation in forward osmosis. RSC Adv. 5, 68109–68116 (2015).
Gai, J.-G., Gong, X.-L., Wang, W.-W., Zhang, X. & Kang, W.-L. An ultrafast water transport forward osmosis membrane: porous graphene. J. Mater. Chem. A 2, 4023–4028 (2014).
Gai, J. & Gong, X. Zero internal concentration polarization FO membrane: functionalized graphene. J. Mater. Chem. A 2, 425–429 (2014).
He, Z., Zhou, J., Lu, X. & Corry, B. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano 7, 10148–10157 (2013).
Kang, Y. et al. Na+ and K+ ion selectivity by size-controlled biomimetic graphene nanopores. Nanoscale 6, 10666–10672 (2014).
Sint, K., Wang, B. & Kra´l, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 131, 9600–9600 (2009).
Suk, M. E. & Aluru, N. R. Ion transport in sub-5-nm graphene nanopores. J. Chem. Phys. 140, 084707 (2014).
Zhao, S., Xue, J. & Kang, W. Ion selection of charge-modified large nanopores in a graphene sheet. J. Chem. Phys. 139, 114702 (2013).
Zhu, C., Li, H. & Meng, S. Transport behavior of water molecules through two-dimensional nanopores. J. Chem. Phys. 141, 18C528 (2014).
Kou, J. et al. Water permeation through single-layer graphyne membrane. J. Chem. Phys. 139, 064705 (2013).
Chandra Shekar, S. & Swathi, R. S. Rattling motion of alkali metal ions through the cavities of model compounds of graphyne and graphdiyne. J. Phys. Chem. A 117, 8632–8641 (2013).
Garnier, L., Szymczyk, A., Malfreyt, P., & Ghoufi, A. Physics behind water transport through nanoporous boron nitride and graphene. J. Phys. Chem. Lett. 7, 3371–3376 (2016).
Park, H. G. & Jung, Y. Carbon nanofluidics of rapid water transport for energy applications. Chem. Soc. Rev. 43, 565–76 (2014).
Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010). This paper reported ionic transport and DNA sensing across graphene nanopores, and experimentally showed hydration energy-dependent ion transport across graphene.
Schneider, G. F. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).
Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).
O'Hern, S. C. et al. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6, 10130–10138 (2012).
O'Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).
Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotech. 10, 459–64 (2015). This paper demonstrated facile pore creation in graphene using oxygen plasma to realize water desalination membranes.
O'Hern, S. C. et al. Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 15, 3254–3260 (2015). This paper reported nanofiltration across graphene enabled by defect sealing and creation of a high density of sub-nanometer pores.
Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 7, 11408 (2016).
Liu, S. et al. Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv. Mater. 25, 4549–4554 (2013).
Liu, K., Feng, J., Kis, A. & Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8, 2504–2511 (2014).
Kuan, A. T., Lu, B., Xie, P., Szalay, T. & Golovchenko, J. A. Electrical pulse fabrication of graphene nanopores in electrolyte solution. Appl. Phys. Lett. 106, 203109 (2015).
Feng, J. et al. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).
Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).
Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).
Lozada-Hidalgo, M. et al. Sieving hydrogen isotopes through two-dimensional crystals. Science 351, 68–70 (2016). This study experimentally demonstrated hydrogen isotope separation across atomically thin membranes.
Walker, M. I., Braeuninger-Weimer, P., Weatherup, R. S., Hofmann, S. & Keyser, U. F. Measuring the proton selectivity of graphene membranes. Appl. Phys. Lett. 107, 213104 (2015).
Achtyl, J. L. et al. Aqueous proton transfer across single-layer graphene. Nat. Commun. 6, 6539 (2015).
Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2014).
Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 5, 574–578 (2010).
Kobayashi, T. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102, 23112 (2013). This paper reported the synthesis of graphene and its transfer to a polymeric support in a scalable roll-to-roll process.
Zaretski, A. V & Lipomi, D. J. Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production. Nanoscale 7, 9963–9969 (2015).
Waduge, P. et al. Direct and scalable deposition of atomically thin low-noise MoS2 membranes on apertures. ACS Nano 9, 7352–7359 (2015).
Alemán, B. et al. Transfer-free batch fabrication of large-area suspended graphene membranes. ACS Nano 4, 4762–4768 (2010).
Lehtinen, O. et al. Production of defects in hexagonal boron nitride monolayer under ion irradiation. Nucl. Instrum. Methods B 269, 1327–1331 (2011).
Lehtinen, O., Kotakoski, J., Krasheninnikov, A. V. & Keinonen, J. Cutting and controlled modification of graphene with ion beams. Nanotechnology 22, 175306 (2011).
Lehtinen, O. et al. Non-invasive transmission electron microscopy of vacancy defects in graphene produced by ion irradiation. Nanoscale 6, 6569–6576 (2014).
Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010).
Russo, C. J. & Golovchenko, J. A. Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl Acad. Sci. USA 109, 5953–5957 (2012).
Tracz, A., Kalachev, A., Wegner, G. & Rabe, J. P. Control over nanopits on the basal plane of graphite by remote argon plasma and subsequent thermal oxidation. Langmuir 11, 2840–2842 (1995).
Zabihi, Z. & Araghi, H. Formation of nanopore in a suspended graphene sheet with argon cluster bombardment: a molecular dynamics simulation study. Nucl. Instrum. Methods B 343, 48–51 (2015).
Rozada, R. et al. Controlled generation of atomic vacancies in chemical vapor deposited graphene by microwave oxygen plasma. Carbon 79, 664–669 (2014).
Xie, G. et al. A general route towards defect and pore engineering in graphene. Small 10, 2280–2284 (2014).
Yamada, Y. et al. Subnanometer vacancy defects introduced on graphene by oxygen gas. J. Am. Chem. Soc. 136, 2232–2235 (2014).
Zandiatashbar, A. et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014).
Fan, Z. et al. Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50, 1699–1703 (2012).
Bagri, A., Grantab, R., Medhekar, N. V & Shenoy, V. B. Stability and formation mechanisms of carbonyl-and hydroxyl-decorated holes in graphene oxide. J. Phys. Chem. C 114, 12053–12061 (2010).
Tracz, A., Wegner, G. & Rabe, J. P. Scanning tunneling microscopy study of graphite oxidation in ozone-air mixtures. Langmuir 19, 6807–6812 (2003).
Liu, L. et al. Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965–1970 (2008).
Tao, H., Moser, J., Alzina, F., Wang, Q. & Sotomayor-Torres, C. M. The morphology of graphene sheets treated in an ozone generator. J. Phys. Chem. C 115, 18257–18260 (2011).
Lehtinen, O. et al. Effects of ion bombardment on a two-dimensional target: atomistic simulations of graphene irradiation. Phys. Rev. B 81, 153401 (2010).
Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotech. 10, 1070–1076 (2015).
He, K. et al. Controlled formation of closed-edge nanopores in graphene. Nanoscale 7, 11602–11610 (2015).
Bai, J., Zhong, X., Jiang, S., Huang, Y. & Duan, X. Graphene nanomesh. Nat. Nanotech. 5, 190–194 (2010).
Cun, H., Iannuzzi, M., Hemmi, A., Osterwalder, J. & Greber, T. Two-nanometer voids in single-layer hexagonal boron nitride: formation via the 'can-opener' effect and annihilation by self-healing. ACS Nano 8, 7423–7431 (2014).
Lin, L.-C. & Grossman, J. C. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nat. Commun. 6, 8335 (2015).
Wang, W. L. et al. Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene. Nano Lett. 14, 450–455 (2014).
Zhou, D., Cui, Y., Xiao, P.-W., Jiang, M.-Y. & Han, B.-H. A general and scalable synthesis approach to porous graphene. Nat. Commun. 5, 4716 (2014).
Feng, J. et al. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Lett. 15, 3431–3438 (2015).
Liu, X.-H., Guan, C.-Z., Wang, D. & Wan, L.-J. Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects. Adv. Mater. 26, 6912–6920 (2014).
Cai, S.-L. et al. The organic flatland-recent advances in synthetic 2D organic layers. Adv. Mater. 27, 5762–5770 (2015).
Peng, Q. et al. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 7, 1–29 (2014).
Li, G. et al. Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010).
Murray, D. J. et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 137, 3450–3453 (2015).
Kidambi, P. R. et al. The parameter space of graphene chemical vapor deposition on polycrystalline Cu. J. Phys. Chem. C 116, 22492–22501 (2012).
Wei, D. C. et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009).
Boutilier, M. S. H. et al. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano 8, 841–849 (2014).
Liu, Y. & Chen, X. Mechanical properties of nanoporous graphene membrane. J. Appl. Phys. 115, 034303 (2014).
Cohen-Tanugi, D. & Grossman, J. C. Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 14, 6171–6178 (2014).
Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).
Koenig, S. P., Boddeti, N. G., Dunn, M. L. & Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nat. Nanotech. 6, 543–546 (2011).
Won, M.-S., Penkov, O. V. & Kim, D.-E. Durability and degradation mechanism of graphene coatings deposited on Cu substrates under dry contact sliding. Carbon 54, 472–481 (2013).
Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).
Kafiah, F. M. et al. Monolayer graphene transfer onto polypropylene and polyvinylidenedifluoride microfiltration membranes for water desalination. Desalination 388, 29–37 (2016).
Ingham, C. J., ter Maat, J. & de Vos, W. M. Where bio meets nano: the many uses for nanoporous aluminum oxide in biotechnology. Biotechnol. Adv. 30, 1089–1099 (2012).
Cohen-Tanugi, D., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).
Mohammad, A. W. et al. Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–254 (2015).
Zhao, D. & Yu, S. A review of recent advance in fouling mitigation of NF/RO membranes in water treatment: pretreatment, membrane modification, and chemical cleaning. Desalin. Water Treat. 5, 870–891 (2015).
Darvishi, M. & Foroutan, M. Mechanism of water separation from a gaseous mixture via nanoporous graphene using molecular dynamics simulation. RSC Adv. 5, 81282–81294 (2015).
Zamani, F., Chew, J. W., Akhondi, E., Krantz, W. B. & Fane, A. G. Unsteady-state shear strategies to enhance mass-transfer for the implementation of ultrapermeable membranes in reverse osmosis: a review. Desalination 356, 328–348 (2015).
Gethers, M. L. et al. Holey graphene as a weed barrier for molecules. ACS Nano 9, 10909–10915 (2015).
Böhm, S. Graphene against corrosion. Nat. Nanotech. 9, 741–742 (2014).
Zurutuza, A. & Marinelli, C. Challenges and opportunities in graphene commercialization. Nat. Nanotech. 9, 730–734 (2014).
Lee, J. & Aluru, N. R. Water-solubility-driven separation of gases using graphene membrane. J. Membrane Sci. 428, 546–553 (2013).
Georgakilas, V. et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012).
Wang, L. et al. Ultrathin oxide films by atomic layer deposition on graphene. Nano Lett. 12, 3706–3710 (2012).
Luo, Y., Harder, E., Faibish, R. S. & Roux, B. Computer simulations of water flux and salt permeability of the reverse osmosis FT-30 aromatic polyamide membrane. J. Membrane Sci. 384, 1–9 (2011).
Kowalczyk, P., Gauden, P. A., Terzyk, A. P. & Furmaniak, S. Microscopic model of carbonaceous nanoporous molecular sieves — anomalous transport in molecularly confined spaces. Phys. Chem. Chem. Phys. 12, 11351–11361 (2010).
Kim, M., Ha, Y.-C., Nguyen, T. N., Choi, H. Y. & Kim, D. Extended self-ordering regime in hard anodization and its application to make asymmetric AAO membranes for large pitch-distance nanostructures. Nanotechnology 24, 505304 (2013).
Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).
Angelova, P. et al. A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes. ACS Nano 7, 6489–6497 (2013).
Wang, E. N. & Karnik, R. Water desalination: graphene cleans up water. Nat. Nanotech. 7, 552–554 (2012).
Suk, M. E., Raghunathan, A. V. & Aluru, N. R. Fast reverse osmosis using boron nitride and carbon nanotubes. Appl. Phys. Lett. 92, 133120 (2008).
Zhu, F., Tajkhorshid, E. & Schulten, K. Pressure-induced water transport in membrane channels studied by molecular dynamics. Biophys. J. 83, 154–160 (2002).
Zhu, F., Tajkhorshid, E. & Schulten, K. Theory and simulation of water permeation in aquaporin-1. Biophys. J. 86, 50–57 (2004).
Wells, D. B., Belkin, M., Comer, J. & Aksimentiev, A. Assessing graphene nanopores for sequencing DNA. Nano Lett. 12, 4117–4123 (2012).
Sathe, C., Zou, X., Leburton, J.-P. & Schulten, K. Computational investigation of DNA detection using graphene nanopores. ACS Nano 5, 8842–8851 (2011).
Garaj, S., Liu, S., Golovchenko, J. A. & Branton, D. Molecule-hugging graphene nanopores. Proc. Natl Acad. Sci. USA 110, 12192–12196 (2013).
Reverse Osmosis (RO) Membrane (SterliTech Corporation, 2016); https://www.sterlitech.com/reverse-osmosis-ro-membrane.html
Xu, P. et al. Rejection of emerging organic micropollutants in nanofiltration–reverse osmosis membrane applications. Water Environ. Res. 77, 40–48 (2005).
Comerton, A. M., Andrews, R. C., Bagley, D. M. & Yang, P. Membrane adsorption of endocrine disrupting compounds and pharmaceutically active compounds. J. Memb. Sci. 303, 267–277 (2007).
van der Bruggen, B. & Vandecasteele, C. Flux decline during nanofiltration of organic components in aqueous solution. Environ. Sci. Technol. 35, 3535–3540 (2001).
Ahmad, A. L., Tan, L. S. & Shukor, S. R. A. Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes. J. Hazard. Mater. 151, 71–77 (2008).
Ultrafiltration (UF) Membranes (SterliTech Corporation, 2016); https://www.sterlitech.com/ultrafiltration-uf-membrane.html
Celik, E., Park, H., Choi, H. H. & Choi, H. H. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res. 45, 274–282 (2011).
de Vos, R. M. High-selectivity, high-flux silica membranes for gas separation. Science 279, 1710–1711 (1998).
Elyassi, B., Sahimi, M. & Tsotsis, T. T. Silicon carbide membranes for gas separation applications. J. Membr. Sci. 288, 290–297 (2007).
Guo, H., Zhu, G., Hewitt, I. J. & Qiu, S. 'Twin copper source' growth of metal−organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J. Am. Chem. Soc. 131, 1646–1647 (2009).
Rezac, M. E. & Schöberl, B. Transport and thermal properties of poly(ether imide)/acetylene-terminated monomer blends. J. Memb. Sci. 156, 211–222 (1999).
Tang, Z., Dong, J. & Nenoff, T. M. Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen. Langmuir 25, 4848–4852 (2009).
Li, P. et al. Recent developments in membranes for efficient hydrogen purification. J. Membr. Sci. 495, 130–168 (2015).
Yilmaz, G. & Keskin, S. Predicting the performance of zeolite imidazolate framework/polymer mixed matrix membranes for CO2, CH4, and H2 separations using molecular simulations. Ind. Eng. Chem. Res. 51, 14218–14228 (2012).
Kang, Z. et al. Highly selective sieving of small gas molecules by using an ultra-microporous metal–organic framework membrane. Energy Environ. Sci. 7, 4053–4060 (2014).
Kim, S., Jinschek, J. R., Chen, H., Sholl, D. S. & Marand, E. Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. Nano Lett. 7, 2806–2811 (2007).
Kim, S., Pechar, T. W. & Marand, E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 192, 330–339 (2006).
Yu, M., Funke, H. H., Falconer, J. L. & Noble, R. D. High density, vertically-aligned carbon nanotube membranes. Nano Lett. 9, 225–229 (2009).
Li, Y., Liang, F., Bux, H., Yang, W. & Caro, J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Memb. Sci. 354, 48–54 (2010).
Acknowledgements
The authors acknowledge research collaborations and helpful discussions with S. C. O'Hern, T. Jain, T. Laoui, J.-C. Idrobo and J. Kong.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
R.K. is a co-founder and has equity in a start-up company aimed at commercializing graphene membranes.
Supplementary information
Supplementary Information
Supplementary Information (PDF 603 kb)
Rights and permissions
About this article
Cite this article
Wang, L., Boutilier, M., Kidambi, P. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotech 12, 509–522 (2017). https://doi.org/10.1038/nnano.2017.72
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2017.72
This article is cited by
-
2D nanochannels and huge specific surface area offer unique ways for water remediation and adsorption: assessing the strengths of hexagonal boron nitride in separation technology
Functional Composite Materials (2023)
-
Towards the realisation of high permi-selective MoS2 membrane for water desalination
npj Clean Water (2023)
-
Photosensitive ion channels in layered MXene membranes modified with plasmonic gold nanostars and cellulose nanofibers
Nature Communications (2023)
-
Beyond steric selectivity of ions using ångström-scale capillaries
Nature Nanotechnology (2023)
-
Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving
Nature Communications (2023)