Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

Abstract

Research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-loss photonic integrated devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unidirectional phase gradient dΦ/dx introduced by a metasurface causes asymmetric waveguide mode coupling.
Figure 2: Asymmetric optical power transmission in waveguides patterned with gradient metasurfaces.
Figure 3: Experimental demonstration of asymmetric optical power transmission in waveguides patterned with gradient metasurfaces.
Figure 4: Mid-infrared waveguide mode converters and polarization rotator based on plasmonic gradient metasurfaces.
Figure 5: Experimental demonstration of mid-infrared waveguide mode converters.
Figure 6: Telecom waveguide mode converters based on dielectric gradient metasurfaces.

Similar content being viewed by others

References

  1. Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).

    Article  CAS  Google Scholar 

  2. Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photon. 4, 495–497 (2010).

    Article  CAS  Google Scholar 

  3. Wada, K., Luan, H.-C., Lim, D. R. & Kimerling, L. C. On-chip interconnection beyond semiconductor roadmap: silicon microphotonics. Proc. SPIE 4870, 437–443 (2002).

    Article  Google Scholar 

  4. Jalali, B. & Fathpour, S. Silicon photonics. IEEE J. Lightw. Technol. 24, 4600–4615 (2006).

    Article  CAS  Google Scholar 

  5. Soref, R. A., Emelett, S. J. & Buchwald, W. R. Silicon waveguided components for the long-wave infrared region. J. Opt. A 8, 840–848 (2006).

    Article  CAS  Google Scholar 

  6. Lin, P. T. et al. Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics. Adv. Opt. Mater. 1, 732–739 (2013).

    Article  Google Scholar 

  7. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  CAS  Google Scholar 

  8. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  9. Yu, N. et al. Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).

    Article  Google Scholar 

  10. Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).

    Article  Google Scholar 

  11. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  CAS  Google Scholar 

  12. Shitrit, N., Bretner, I., Gorodetski, Y., Kleiner, V. & Hasman, E. Optical spin Hall effects in plasmonic chains. Nano Lett. 11, 2038–2042 (2011).

    Article  CAS  Google Scholar 

  13. Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

    Article  CAS  Google Scholar 

  14. Chen, X. et al. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012).

    Article  Google Scholar 

  15. Yang, Y. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014).

    Article  CAS  Google Scholar 

  16. Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotech. 10, 308–312 (2015).

    Article  CAS  Google Scholar 

  17. Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016).

    Article  CAS  Google Scholar 

  18. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  CAS  Google Scholar 

  19. Gok, G. & Grbic, A. Tailoring the phase and power flow of electromagnetic fields. Phys. Rev. Lett. 111, 233904 (2013).

    Article  Google Scholar 

  20. Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).

    Article  CAS  Google Scholar 

  21. Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photon. 9, 374–377 (2015).

    Article  CAS  Google Scholar 

  22. Shen, B., Wang, P., Polson, R. & Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photon. 9, 378–382 (2015).

    Article  CAS  Google Scholar 

  23. Sun, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012).

    Article  CAS  Google Scholar 

  24. Sun, W., He, Q., Sun, S. & Zhou, L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light: Sci. Appl. 5, e16003 (2016).

    Article  CAS  Google Scholar 

  25. Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013).

    Article  CAS  Google Scholar 

  26. Mansuripur, M. The uncertainty principle in classical optics. Opt. Photon. News 13, 44–48 (2002).

    CAS  Google Scholar 

  27. Holmes, B. M. & Hutchings, D. C. Realization of novel low-loss monolithically integrated passive waveguide mode converters. IEEE Photon. Technol. Lett. 18, 43–45 (2006).

    Article  CAS  Google Scholar 

  28. Velasco, A. V. et al. Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide. Opt. Lett. 37, 365–367 (2012).

    Article  Google Scholar 

  29. Ohana, D., Desiatov, B., Mazurski, N. & Levy, U. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 16, 7956–7961 (2016).

    Article  CAS  Google Scholar 

  30. Chen, D. et al. Highly efficient silicon optical polarization rotators based on mode order conversions. Opt. Lett. 41, 1070–1073 (2016).

    Article  CAS  Google Scholar 

  31. Yariv, A. Optical Electronics in Modern Communications 5th edn (Oxford Univ. Press, 1997).

    Google Scholar 

  32. Marcuse, D. Theory of Dielectric Optical Waveguides 2nd edn (Academic, 1991).

    Google Scholar 

  33. Jalas, D. et al. What is—and what is not—an optical isolator. Nat. Photon. 7, 579–582 (2013).

    Article  CAS  Google Scholar 

  34. Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon. 5, 758–762 (2011).

    Article  CAS  Google Scholar 

  35. Fan, L. An all-silicon passive optical diode. Science 335, 447–450 (2012).

    Article  CAS  Google Scholar 

  36. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    Article  Google Scholar 

  37. Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

    Article  CAS  Google Scholar 

  38. Lin, D. M., Fan, P. Y., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  CAS  Google Scholar 

  39. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotech. 10, 937–943 (2015).

    Article  CAS  Google Scholar 

  40. Liu, V., Miller, D. A. B. & Fan, S. Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect. Opt. Express 20, 28388–28397 (2012).

    Article  Google Scholar 

  41. Ding, Y. et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt. Express 21, 10376–10382 (2013).

    Article  Google Scholar 

  42. Dai, D., Wang, J. & Shi, Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt. Lett. 38, 1422–1424 (2013).

    Article  CAS  Google Scholar 

  43. Zhang, Y. et al. Ultra-compact and highly efficient silicon polarization splitter and rotator. APL Photon. 1, 091304 (2016).

    Article  Google Scholar 

  44. Sacher, W. D., Barwicz, T., Taylor, B. J. F. & Poon, J. K. S. Polarization rotator-splitters in standard active silicon photonics platforms. Opt. Express 22, 3777–3786 (2014).

    Article  CAS  Google Scholar 

  45. Luo, L.-W. et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 5, 3069 (2014).

    Article  Google Scholar 

  46. Lee, B.-T. & Shin, S.-Y. Mode-order converter in a multimode waveguide. Opt. Lett. 28, 1660–1662 (2003).

    Article  Google Scholar 

  47. Huang, Y., Xu, G. & Ho, S.-T. An ultracompact optical mode order converter. IEEE Photon. Technol. Lett. 18, 2281–2283 (2006).

    Article  Google Scholar 

  48. Guan, H. et al. High-efficiency low-crosstalk 1310-nm polarization splitter and rotator. IEEE Photon. Technol. Lett. 26, 925–928 (2014).

    Article  Google Scholar 

  49. Driscoll, J. B. et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett. 38, 1854–1856 (2013).

    Article  CAS  Google Scholar 

  50. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Air Force Office of Scientific Research (grant no. FA9550-14-1-0389, through a Multidisciplinary University Research Initiative programme), a Defense Advanced Research Projects Agency Young Faculty Award (grant no. D15AP00111) and the National Science Foundation (grant no. ECCS-1307948). The authors acknowledge funding from the Ministry of Defense, Singapore, and from the Defense Threat Reduction Agency (grant no. HDTRA1-13-1-0001). A.C.O. acknowledges support from the NSF IGERT programme (grant no. DGE-1069240). Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences (contract no. DE-SC0012704). The authors thank M. Lipson, R. Osgood Jr, P.-T. Lin and L. Zhang for discussions.

Author information

Authors and Affiliations

Authors

Contributions

Z.L., M.-H.K. and N.Y. conceived and designed the experiments. Z.L., M.K. and C.W. fabricated the devices, with M.L. and A.S.'s assistance. M.K., Z.L., Z.H., C.W., S.S. and A.C.O. performed the measurements and analysed the data, with A.M.A., M.L. and N.Y.'s supervision. Z.L. and M.K. developed theoretical models and conducted numerical simulations, with N.Y.'s supervision. Z.L., M.K. and N.Y. wrote the manuscript, with input from all co-authors. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Nanfang Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Kim, MH., Wang, C. et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nature Nanotech 12, 675–683 (2017). https://doi.org/10.1038/nnano.2017.50

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.50

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing