Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes

This article has been updated

Abstract

Intravenously injected nanopharmaceuticals, including PEGylated nanoparticles, induce adverse cardiopulmonary reactions in sensitive human subjects, and these reactions are highly reproducible in pigs. Although the underlying mechanisms are poorly understood, roles for both the complement system and reactive macrophages have been implicated. Here, we show the dominance and importance of robust pulmonary intravascular macrophage clearance of nanoparticles in mediating adverse cardiopulmonary distress in pigs irrespective of complement activation. Specifically, we show that delaying particle recognition by macrophages within the first few minutes of injection overcomes adverse reactions in pigs using two independent approaches. First, we changed the particle geometry from a spherical shape (which triggers cardiopulmonary distress) to either rod- or disk-shape morphology. Second, we physically adhered spheres to the surface of erythrocytes. These strategies, which are distinct from commonly leveraged stealth engineering approaches such as nanoparticle surface functionalization with poly(ethylene glycol) and/or immunological modulators, prevent robust macrophage recognition, resulting in the reduction or mitigation of adverse cardiopulmonary distress associated with nanopharmaceutical administration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Graphical and scanning electron microscopy (SEM) representation of spheres, rods and disks.
Figure 2: Changes in complement activation in pig blood, and pig haemodynamic parameters after exposure to spheres (circles), rods (triangles) and disks (squares).
Figure 3: Circulation profile of spheres, rods and disks following intravenous injection into pigs.
Figure 4: Dampening of particle-mediated haemodynamic changes in pigs following pulmonary intravascular macrophage (PIM) depletion.
Figure 5: Overcoming adverse reactions to spheres through erythrocyte ‘hitch-hiking’.

Change history

  • 03 May 2017

    In the version of this Article originally published the first author's middle name was misspelled. His name should have read Peter Popp Wibroe. This has been corrected in all versions of the Article.

References

  1. 1

    Kattan, J . et al. Phase, I. Clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest. New Drugs 10, 191–199 (1992).

    CAS  Article  Google Scholar 

  2. 2

    Laing, R. B., Milne, L. J., Leen, C. L., Malcolm, G. P. & Steers, A. J. Anaphylactic reactions to liposomal amphotericin. Lancet 344, 682 (1994).

    CAS  Article  Google Scholar 

  3. 3

    Uziely, B. et al. Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J. Clin. Oncol. 13, 1777–1785 (1995).

    CAS  Article  Google Scholar 

  4. 4

    Moghimi, S. M., Wibroe, P. P., Helvig, S. Y., Farhangrazi, Z. S. & Hunter, A. C. Genomic perspectives in inter-individual adverse responses following nanomedicine administration: the way forward. Adv. Drug Deliver. Rev. 64, 1385–1393 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Szebeni, J. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Mol. Immunol. 61, 163–173 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Kastl, S. P. et al. In human macrophages the complement component C5a induces the expression of oncostatin M via AP-1 activation. Arterioscler. Thromb. Vasc. Biol. 28, 498–503 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Woodruff, T. M., Nandakumar, K. S. & Tedesco, F. Inhibiting the C5–C5a receptor axis. Mol. Immunol. 48, 1631–1642 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Szebeni, J . et al. A porcine model of complement-mediated infusion reactions to drug carrier nanosystems and other medicines. Adv. Drug Deliv. Rev. 64, 1706–1716 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Szebeni, J. et al. Complement activation-related cardiac anaphylaxis in pigs: role of C5a anaphylatoxin and adenosine in liposome-induced abnormalities in ECG and heart function. Am. J. Physiol. Heart Circ. Physiol. 290, H1050–H1058 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Warner, A. E. Pulmonary intravascular macrophages. role in acute lung injury. Clin. Chest Med. 17, 125–135 (1996).

    CAS  Article  Google Scholar 

  11. 11

    Schneberger, D., Aharonson-Raz, K. & Singh, B. Pulmonary intravascular macrophages and lung health: what are we missing? Am. J. Physiol. Lung Cell Mol. Physiol. 302, L498–L503 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Longworth, K. E., Westgate, A. M., Grady, M. K., Westcott, J. Y. & Staub, N. C. Development of pulmonary intravascular macrophage function in newborn lambs. J. Appl. Physiol. 73, 2608–2615 (1992).

    CAS  Article  Google Scholar 

  13. 13

    Csukás, D., Urbanics, R., Wéber, G., Rosivall, L. & Szebeni, J. Pulmonary intravascular macrophages: prime suspects as cellular mediators of porcine CARPA. Eur. J. Nanomed. 7, 27–36 (2015).

    Article  Google Scholar 

  14. 14

    Zhang, X . et al. Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo. Blood 110, 228–236 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Moghimi, S. M. Complement propriety and conspiracy in nanomedicine: perspective and a hypothesis. Nucleic Acid Ther. 26, 67–72 (2016).

    CAS  Article  Google Scholar 

  16. 16

    Keyes, J. W. Jr, Wilson, G. A. & Quinonest, J. D. An evaluation of lung uptake of colloid during liver imaging. J. Nucl. Med. 14, 687–691 (1973).

    Google Scholar 

  17. 17

    Imarisio, J. J. Liver scan showing intense lung uptake in neoplasia and infection. J. Nucl. Med. 16, 188–190 (1975).

    CAS  Google Scholar 

  18. 18

    Moghimi, S. M. et al. Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. J. Control. Release 146, 175–181 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Chanan-Khan, A. et al. Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann. Oncol. 14, 1430–1437 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Szebeni, J. et al. Liposome-induced complement activation and related cardiopulmonary distress in pigs: factors promoting reactogenicity of Doxil and AmBisome. Nanomedicine 8, 176–184 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Moghimi, S. M., Hamad, I., Andresen, T. L., Jorgensen, K. & Szebeni, J. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. FASEB J. 20, 2591–2593 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Andersen, A. J. et al. Single-walled carbon nanotube surface control of complement recognition and activation. ACS Nano. 7, 1108–1119 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Moghimi, S. M. & Murray, J. C. Poloxamer-188 revisited: a potentially valuable immune modulator? J. Natl Cancer Inst. 88, 766–768 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Laverman, P., Carstens, M. G., Storm, G. & Moghimi, S. M. Recognition and clearance of methoxypoly(ethyleneglycol)2000-grafted liposomes by macrophages with enhanced phagocytic capacity. Implications in experimental and clinical oncology. Biochim. Biophys. Acta 1526, 227–229 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Kolhar, P. et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl Acad. Sci. USA 110, 10753–10758 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Lu, Z. S., Qiao, Y., Zheng, X. T., Chan-Park, M. B. & Li, C. M. Effect of particle shape on phagocytosis of CdTe quantum dot–cystine composites. MedChemComm 1, 84–86 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotech. 2, 249–255 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Chambers, E. & Mitragotri, S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J. Control. Release 100, 111–119 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Anselmo, A. C. et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7, 11129–11137 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Moghimi, S. M., Hunter, A. C. & Andresen, T. L. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu. Rev. Pharmacol. Toxicol. 52, 481–503 (2012).

    CAS  Article  Google Scholar 

  32. 32

    Jansen, J. H., Hogasen, K. & Mollnes, T. E. Extensive complement activation in hereditary porcine membranoproliferative glomerulonephritis type II (porcine dense deposit disease). Am. J. Pathol. 143, 1356–1365 (1993).

    CAS  Google Scholar 

  33. 33

    Wibroe, P. P., Ahmadvand, D., Oghabian, M. A., Yaghmur, A. & Moghimi, S. M. An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome. J. Control. Release 221, 1–8 (2016).

    CAS  Article  Google Scholar 

  34. 34

    Hamad, I. et al. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere–serum interface: implications for stealth nanoparticle engineering. ACS Nano 4, 6629–6638 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Chen, F. et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat. Nanotech. http://dx.doi.org/10.1038/nnano.2016.269 (2016).

  36. 36

    Montalescot, G . et al. Evaluation of thromboxane production and complement activation during myocardial ischemia in patients with angina pectoris. Circulation 84, 2054–2062 (1991).

    CAS  Article  Google Scholar 

  37. 37

    Gaca, J. G. et al. Prevention of acute lung injury in swine: depletion of pulmonary intravascular macrophages using liposomal clodronate. J. Surg. Res. 112, 19–25 (2003).

    CAS  Article  Google Scholar 

  38. 38

    Szebeni, J. et al. The role of complement activation in hypersensitivity to PEGylated liposomal doxorubicin (Doxil®). J. Liposome Res. 10, 467–481 (2000).

    CAS  Article  Google Scholar 

  39. 39

    Sone, Y., Serikov, V. B. & Staub, N. C. Intravascular macrophage depletion attenuates endotoxin lung injury in anesthetized sheep. J. Appl. Physiol. 87, 1354–1359.

  40. 40

    Decuzzi, P. et al. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release 141, 320–327 (2010).

    CAS  Article  Google Scholar 

  41. 41

    Decuzzi, P., Lee, S., Bhushan, B. & Ferrari, M. A theoretical model for the margination of particles with blood vessels. Ann. Biomed. Eng. 33, 179–190 (2005).

    CAS  Article  Google Scholar 

  42. 42

    Castells, M. Desensitization for drug allergy. Curr. Opin. Allergy Clin. Immunol. 6, 476–481 (2006).

    CAS  Article  Google Scholar 

  43. 43

    Bugna, S . et al. Surprising lack of liposome-induced complement activation by artificial 1,3-diamidophospholipids in vitro. Nanomedicine 12, 845–849 (2016).

    CAS  Article  Google Scholar 

  44. 44

    Moghimi, S. M. Recent developments in polymeric nanoparticle engineering and their applications in experimental and clinical oncology. Anticancer Agents Med. Chem. 6, 553–561 (2006).

    CAS  Article  Google Scholar 

  45. 45

    Szebeni, J. et al. Hemodynamic changes induced by liposomes and liposome-encapsulated hemoglobin in pigs: a model of pseudollargic cardiopulmonary reactions to liposomes. Role of complement and inhibition by soluble CR1 and anti-C5a antibody. Circulation 99, 2302–2309 (1999).

    CAS  Article  Google Scholar 

  46. 46

    Meszaros, T. et al. Factor H inhibits complement activation induced by liposomal and micellar drugs and the therapeutic antibody rituximab in vitro. Nanomedicine 12, 1023–1031 (2016).

    CAS  Article  Google Scholar 

  47. 47

    Wu, Y. Q. et al. Protection of nonself surfaces from complement attack by factor H-binding peptides: implications for therapeutic medicine. J. Immunol. 186, 4269–4277 (2011).

    CAS  Article  Google Scholar 

  48. 48

    Rodriguez, P. L. et al. Minimal ‘self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

    CAS  Article  Google Scholar 

  49. 49

    Perry, J. L., Herlihy, K. P., Napier, M. E. & Desimone, J. M. PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc. Chem. Res. 44, 990–998 (2011).

    CAS  Article  Google Scholar 

  50. 50

    Mollnes, T. E. et al. Essential role of the C5a receptor in E coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood 100, 1869–1877 (2002).

    CAS  Google Scholar 

  51. 51

    Bergseth, G. et al. An international serum standard for application in assays to detect human complement activation products. Mol. Immunol. 56, 232–239 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

S.M.M. acknowledges financial support by the Danish Agency for Science, Technology and Innovation (Det Strategiske Forskningsråd), reference 09-065746. T.E.M. acknowledges financial support from the European Community's Seventh Framework Programme under grant agreement no. 602699 (DIREKT). S.M. acknowledges support from the National Institutes of Health (R01HL129179). The authors thank N. Payemi (University of Copenhagen) for assisting with scanning electron microscopy studies and H. Biotech for providing the pig C5a ELISA kit.

Author information

Affiliations

Authors

Contributions

S.M.M. and P.P.W. conceived the idea. P.P.W., A.C.A., P.H.N., A.S., V.G., R.U. and S.M.M. performed experiments. All authors designed, analysed and discussed data. P.P.W. and S.M.M. wrote the paper, with contributions from all authors. All co-authors critically revised the manuscript.

Corresponding author

Correspondence to Seyed Moein Moghimi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 657 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wibroe, P., Anselmo, A., Nilsson, P. et al. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nature Nanotech 12, 589–594 (2017). https://doi.org/10.1038/nnano.2017.47

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research