Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se

Abstract

High-mobility semiconducting ultrathin films form the basis of modern electronics, and may lead to the scalable fabrication of highly performing devices. Because the ultrathin limit cannot be reached for traditional semiconductors, identifying new two-dimensional materials with both high carrier mobility and a large electronic bandgap is a pivotal goal of fundamental research1,2,3,4,5,6,7,8,9. However, air-stable ultrathin semiconducting materials with superior performances remain elusive at present10. Here, we report ultrathin films of non-encapsulated layered Bi2O2Se, grown by chemical vapour deposition, which demonstrate excellent air stability and high-mobility semiconducting behaviour. We observe bandgap values of 0.8 eV, which are strongly dependent on the film thickness due to quantum-confinement effects. An ultrahigh Hall mobility value of >20,000 cm2 V−1 s−1 is measured in as-grown Bi2O2Se nanoflakes at low temperatures. This value is comparable to what is observed in graphene grown by chemical vapour deposition11 and at the LaAlO3–SrTiO3 interface12, making the detection of Shubnikov–de Haas quantum oscillations possible. Top-gated field-effect transistors based on Bi2O2Se crystals down to the bilayer limit exhibit high Hall mobility values (up to 450 cm2 V−1 s−1), large current on/off ratios (>106) and near-ideal subthreshold swing values (65 mV dec–1) at room temperature. Our results make Bi2O2Se a promising candidate for future high-speed and low-power electronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lattice and electronic structure of layered Bi2O2Se.
Figure 2: Growth and characterization of layered Bi2O2Se nanoplates.
Figure 3: Shubnikov–de Haas quantum oscillations in non-encapsulated Bi2O2Se crystals.
Figure 4: Room-temperature mobility of top-gated Bi2O2Se-channel FETs with large on/off ratios.

Similar content being viewed by others

References

  1. Reich, E. S. Phosphorene excites materials scientists. Nature 506, 19 (2014).

    Article  Google Scholar 

  2. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  3. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  4. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotech. 9, 768–779 (2014).

    Article  CAS  Google Scholar 

  5. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  6. Li, S.-L., Tsukagoshi, K., Orgiu, E. & Samorì, P. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 45, 118–151 (2016).

    Article  CAS  Google Scholar 

  7. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  8. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  9. Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotech. 11, 593–597 (2016).

    Article  CAS  Google Scholar 

  10. Island, J. O., Steele, G. A., van der Zant, H. S. & Castellanos-Gomez, A. Environmental instability of few-layer black phosphorus. 2D Mater. 2, 011002 (2015).

    Article  Google Scholar 

  11. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  12. Ohtomo, A. & Hwang, H. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  13. Boller, H. Crystal structure of Bi2O2Se. Monatsh. Chem. 104, 916–919 (1973).

    Article  CAS  Google Scholar 

  14. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  Google Scholar 

  15. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  16. Zhang, W. X., Huang, Z. S., Zhang, W. L. & Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7, 1731–1737 (2014).

    Article  CAS  Google Scholar 

  17. Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

  18. Li, H. et al. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 134, 6132–6135 (2012).

    Article  CAS  Google Scholar 

  19. Peng, H. et al. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 4, 281–286 (2012).

    Article  CAS  Google Scholar 

  20. Schwierz, F. Graphene transistors. Nat. Nanotech. 5, 487–496 (2010).

    Article  CAS  Google Scholar 

  21. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  22. Bittle, E. G., Basham, J. I., Jackson, T. N., Jurchescu, O. D. & Gundlach, D. J. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 7, 10908 (2016).

    Article  CAS  Google Scholar 

  23. Uemura, T. et al. On the extraction of charge carrier mobility in high-mobility organic transistors. Adv. Mater. 28, 151–155 (2016).

    Article  CAS  Google Scholar 

  24. Fuhrer, M. S. & Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotech. 8, 146–147 (2013).

    Article  CAS  Google Scholar 

  25. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nat. Mater. 12, 815–820 (2013).

    Article  CAS  Google Scholar 

  26. Kim, Y. S. et al. Thickness-dependent bulk properties and weak antilocalization effect in topological insulator Bi2Se3 . Phys. Rev. B. 84, 073109 (2011).

    Article  Google Scholar 

  27. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotech. 10, 534–540 (2015).

    Article  CAS  Google Scholar 

  28. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  29. Zhang, X. et al. Thermal decomposition of bismuth oxysulfide from photoelectric Bi2O2S to superconducting Bi4O4S3 . ACS Appl. Mater. Inter. 7, 4442–4448 (2015).

    Article  CAS  Google Scholar 

  30. Luu, S. D. & Vaqueiro, P. Synthesis, characterisation and thermoelectric properties of the oxytelluride Bi2O2Te. J. Solid State Chem. 226, 219–223 (2015).

    Article  CAS  Google Scholar 

  31. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996).

    Article  CAS  Google Scholar 

  32. Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank X. B. Ren and C. H. Jin for analysis of elemental maps. H.L.P. acknowledges support from the National Basic Research Program of China (grant numbers 2014CB932500 and 2016YFA0200101), the National Natural Science Foundation of China (grant number 21525310) and the National Program for Support of Top-Notch Young Professionals. H.T.Y., Y.C. and H.Y.H. were supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract number DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Contributions

H.P., J.W. and H.T.Y. conceived the original idea for the project. J.W. carried out the synthesis and structural characterizations of the bulk and two-dimensional crystals. The devices were fabricated by J.W. with M.M.'s help. H.T.Y., J.W., M.M., J.Y. and Z.C. performed the transport measurements and data analysis. Y.S. and Y.B. carried out the theoretical calculations. The ARPES measurements were done by C.C. and Y.L.C. The manuscript was written by H.P., H.T.Y. and J.W., with input from the other authors. All work was supervised by H.P. All authors contributed to the scientific planning and discussions.

Corresponding author

Correspondence to Hailin Peng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3049 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Yuan, H., Meng, M. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nature Nanotech 12, 530–534 (2017). https://doi.org/10.1038/nnano.2017.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing