Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule electrometry

Abstract

Mass and electrical charge are fundamental properties of biological macromolecules. Although molecular mass has long been determined with atomic precision, a direct and precise determination of molecular charge remains an outstanding challenge. Here we report high-precision (<1e) measurements of the electrical charge of molecules such as nucleic acids, and globular and disordered proteins in solution. The measurement is based on parallel external field-free trapping of single macromolecules, permits the estimation of a dielectric coefficient of the molecular interior and can be performed in real time. Further, we demonstrate the direct detection of single amino acid substitution and chemical modifications in proteins. As the electrical charge of a macromolecule strongly depends on its three-dimensional conformation, this kind of high-precision electrometry offers an approach to probe the structure, fluctuations and interactions of a single molecule in solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term trapping of single nucleic acid and protein molecules in solution.
Figure 2: ETe to determine the electrical charge of a trapped species.
Figure 3: The effective electrical charge of nucleic acids and proteins measured using ETe.
Figure 4: Sequential ETe to detect chemical modifications and amino acid exchanges in a disordered protein.
Figure 5: Real-time measurement of the electrical charge of a single molecule.

Similar content being viewed by others

References

  1. Perutz, M. F. Electrostatic effects in proteins. Science 201, 1187–1191 (1978).

    Article  CAS  Google Scholar 

  2. Warshel, A., Sharma, P. K., Kato, M. & Parson, W. W. Modeling electrostatic effects in proteins. Biochim. Biophys. Acta 1764, 1647–1676 (2006).

    Article  CAS  Google Scholar 

  3. Bah, A. et al. Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 519, 106–109 (2015).

    Article  CAS  Google Scholar 

  4. Kamerlin, S. C. L., Sharma, P. K., Prasad, R. B. & Warshel, A. Why nature really chose phosphate. Q. Rev. Biophys. 46, 1–132 (2013).

    Article  CAS  Google Scholar 

  5. Lawrence, M. S., Phillips, K. J. & Liu, D. R. Supercharging proteins can impart unusual resilience. J. Am. Chem. Soc. 129, 10110–10112 (2007).

    Article  CAS  Google Scholar 

  6. Mirceta, S. et al. Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science 340, 1234192 (2013).

    Article  Google Scholar 

  7. Martin, L., Latypova, X. & Terro, F. Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem. Int. 58, 458–471 (2011).

    Article  CAS  Google Scholar 

  8. Bode, A. M. & Dong, Z. G. Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer 4, 793–805 (2004).

    Article  CAS  Google Scholar 

  9. Manning, G. S. Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J. Chem. Phys. 51, 924–933 (1969).

    Article  CAS  Google Scholar 

  10. Netz, R. R. & Orland, H. Variational charge renormalization in charged systems. Eur. Phys. J. E 11, 301–311 (2003).

    Article  CAS  Google Scholar 

  11. Lund, M. & Jonsson, B. Charge regulation in biomolecular solution. Q. Rev. Biophys. 46, 265–281 (2013).

    Article  CAS  Google Scholar 

  12. Ninham, B. W. & Parsegian, V. A. Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. J. Theor. Biol. 31, 405–428 (1971).

    Article  CAS  Google Scholar 

  13. Alexander, S. et al. Charge renormalization, osmotic-pressure, and bulk modulus of colloidal crystals—theory. J. Chem. Phys. 80, 5776–5781 (1984).

    Article  CAS  Google Scholar 

  14. Aubouy, M., Trizac, E. & Bocquet, L. Effective charge versus bare charge: an analytical estimate for colloids in the infinite dilution limit. J. Phys. A 36, 5835–5840 (2003).

    Article  CAS  Google Scholar 

  15. Belloni, L. Ionic condensation and charge renormalization in colloidal suspensions. Colloids Surf. A 140, 227–243 (1998).

    Article  CAS  Google Scholar 

  16. Krishnan, M., Mojarad, N., Kukura, P. & Sandoghdar, V. Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467, 692–695 (2010).

    Article  CAS  Google Scholar 

  17. Mojarad, N. & Krishnan, M. Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap. Nat. Nanotech. 7, 448–452 (2012).

    Article  CAS  Google Scholar 

  18. Gast, K. et al. Prothymosin-alpha—a biologically-active protein with random coil conformation. Biochemistry 34, 13211–13218 (1995).

    Article  CAS  Google Scholar 

  19. Mueller-Spaeth, S. et al. Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 107, 14609–14614 (2010).

    Article  Google Scholar 

  20. Rozycka, M. et al. Intrinsically disordered and pliable starmaker-like protein from Medaka (Oryzias latipes) controls the formation of calcium carbonate crystals. PLoS ONE 9, e114308 (2014).

    Article  Google Scholar 

  21. Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940).

    Article  CAS  Google Scholar 

  22. Krishnan, M. Electrostatic free energy for a confined nanoscale object in a fluid. J. Chem. Phys. 138, 114906 (2013).

    Article  Google Scholar 

  23. Manning, G. S. Molecular theory of polyelectrolyte solutions with applications to electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179–246 (1978).

    Article  CAS  Google Scholar 

  24. Manning, G. S. Approximate solutions to some problems in polyelectrolyte theory involving nonuniform charge distributions. Macromolecules 41, 6217–6227 (2008).

    Article  CAS  Google Scholar 

  25. Gordon, J. C. et al. H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 33, W368–W371 (2005).

    Article  CAS  Google Scholar 

  26. Li, L., Li, C., Zhang, Z. & Alexov, E. On the ‘dielectric constant’ of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J. Chem. Theory Comput. 9, 2126–2136 (2013).

    Article  CAS  Google Scholar 

  27. Sham, Y. Y., Muegge, I. & Warshel, N. Effect of protein relaxation on charge–charge interaction and dielectric constants in protein. Biophys. J. 76, A198–A198 (1999).

    Article  Google Scholar 

  28. Isom, D. G., Castaneda, C. A., Cannon, B. R. & Garcia-Moreno, B. E. Large shifts in pKa values of lysine residues buried inside a protein. Proc. Natl Acad. Sci. USA 108, 5260–5265 (2011).

    Article  CAS  Google Scholar 

  29. Piliarik, M. & Sandoghdar, V. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 5, 4495 (2014).

    Article  CAS  Google Scholar 

  30. Arroyo, J. O. et al. Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett. 14, 2065–2070 (2014).

    Article  Google Scholar 

  31. Wang, Q. & Moerner, W. E. Single-molecule motions enable direct visualization of biomolecular interactions in solution. Nat. Methods 11, 555–558 (2014).

    Article  CAS  Google Scholar 

  32. Gao, J. M., Mammen, M. & Whitesides, G. M. Evaluating electrostatic contributions to binding with the use of protein charge ladders. Science 272, 535–537 (1996).

    Article  CAS  Google Scholar 

  33. Winston, R. L. & Fitzgerald, M. C. Mass spectrometry as a readout of protein structure and function. Mass Spectrom. Rev. 16, 165–179 (1997).

    Article  CAS  Google Scholar 

  34. Sharon, M. & Robinson, C. V. The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem. 76, 167–193 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge M. Borgia for the generous gift of unlabelled ProTαC protein, D. Nettels for help with fluorescence correlation spectroscopy (FCS) instrumentation and providing FCS data-analysis software, S. Chesnov from the Functional Genomics Center Zurich for mass spectrometry analysis, A. Caflisch, A. Soranno, G. Manning and R. Netz for discussions, and the Swiss National Science Foundation and University of Zurich for financial support. Nanofabrication was carried out at the FIRST Center for Micro- and Nanoscience, ETH Zurich.

Author information

Authors and Affiliations

Authors

Contributions

F.R. performed the experiments and analysed the data. F.Z. and F.R. purified and labelled the proteins and nucleic acids and performed and analysed the FCS experiments. N.M., M.R., M.W. and A.O. provided the unlabelled Stm-l protein. F.Z. and B.S. contributed biochemical expertise, including protein selection. M.K. conceived the project, performed the theoretical analysis, interpreted the data and wrote the manuscript. F.R., F.Z. and B.S. provided feedback on the manuscript.

Corresponding author

Correspondence to Madhavi Krishnan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4695 kb)

Supplementary information

Supplementary Movie 1 (AVI 1504 kb)

Supplementary information

Supplementary Movie 2 (AVI 842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggeri, F., Zosel, F., Mutter, N. et al. Single-molecule electrometry. Nature Nanotech 12, 488–495 (2017). https://doi.org/10.1038/nnano.2017.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.26

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing