Single-molecule electrometry

Abstract

Mass and electrical charge are fundamental properties of biological macromolecules. Although molecular mass has long been determined with atomic precision, a direct and precise determination of molecular charge remains an outstanding challenge. Here we report high-precision (<1e) measurements of the electrical charge of molecules such as nucleic acids, and globular and disordered proteins in solution. The measurement is based on parallel external field-free trapping of single macromolecules, permits the estimation of a dielectric coefficient of the molecular interior and can be performed in real time. Further, we demonstrate the direct detection of single amino acid substitution and chemical modifications in proteins. As the electrical charge of a macromolecule strongly depends on its three-dimensional conformation, this kind of high-precision electrometry offers an approach to probe the structure, fluctuations and interactions of a single molecule in solution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Long-term trapping of single nucleic acid and protein molecules in solution.
Figure 2: ETe to determine the electrical charge of a trapped species.
Figure 3: The effective electrical charge of nucleic acids and proteins measured using ETe.
Figure 4: Sequential ETe to detect chemical modifications and amino acid exchanges in a disordered protein.
Figure 5: Real-time measurement of the electrical charge of a single molecule.

References

  1. 1

    Perutz, M. F. Electrostatic effects in proteins. Science 201, 1187–1191 (1978).

    CAS  Article  Google Scholar 

  2. 2

    Warshel, A., Sharma, P. K., Kato, M. & Parson, W. W. Modeling electrostatic effects in proteins. Biochim. Biophys. Acta 1764, 1647–1676 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Bah, A. et al. Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 519, 106–109 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Kamerlin, S. C. L., Sharma, P. K., Prasad, R. B. & Warshel, A. Why nature really chose phosphate. Q. Rev. Biophys. 46, 1–132 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Lawrence, M. S., Phillips, K. J. & Liu, D. R. Supercharging proteins can impart unusual resilience. J. Am. Chem. Soc. 129, 10110–10112 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Mirceta, S. et al. Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science 340, 1234192 (2013).

    Article  Google Scholar 

  7. 7

    Martin, L., Latypova, X. & Terro, F. Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem. Int. 58, 458–471 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Bode, A. M. & Dong, Z. G. Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer 4, 793–805 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Manning, G. S. Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J. Chem. Phys. 51, 924–933 (1969).

    CAS  Article  Google Scholar 

  10. 10

    Netz, R. R. & Orland, H. Variational charge renormalization in charged systems. Eur. Phys. J. E 11, 301–311 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Lund, M. & Jonsson, B. Charge regulation in biomolecular solution. Q. Rev. Biophys. 46, 265–281 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Ninham, B. W. & Parsegian, V. A. Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. J. Theor. Biol. 31, 405–428 (1971).

    CAS  Article  Google Scholar 

  13. 13

    Alexander, S. et al. Charge renormalization, osmotic-pressure, and bulk modulus of colloidal crystals—theory. J. Chem. Phys. 80, 5776–5781 (1984).

    CAS  Article  Google Scholar 

  14. 14

    Aubouy, M., Trizac, E. & Bocquet, L. Effective charge versus bare charge: an analytical estimate for colloids in the infinite dilution limit. J. Phys. A 36, 5835–5840 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Belloni, L. Ionic condensation and charge renormalization in colloidal suspensions. Colloids Surf. A 140, 227–243 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Krishnan, M., Mojarad, N., Kukura, P. & Sandoghdar, V. Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467, 692–695 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Mojarad, N. & Krishnan, M. Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap. Nat. Nanotech. 7, 448–452 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Gast, K. et al. Prothymosin-alpha—a biologically-active protein with random coil conformation. Biochemistry 34, 13211–13218 (1995).

    CAS  Article  Google Scholar 

  19. 19

    Mueller-Spaeth, S. et al. Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 107, 14609–14614 (2010).

    Article  Google Scholar 

  20. 20

    Rozycka, M. et al. Intrinsically disordered and pliable starmaker-like protein from Medaka (Oryzias latipes) controls the formation of calcium carbonate crystals. PLoS ONE 9, e114308 (2014).

    Article  Google Scholar 

  21. 21

    Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940).

    CAS  Article  Google Scholar 

  22. 22

    Krishnan, M. Electrostatic free energy for a confined nanoscale object in a fluid. J. Chem. Phys. 138, 114906 (2013).

    Article  Google Scholar 

  23. 23

    Manning, G. S. Molecular theory of polyelectrolyte solutions with applications to electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179–246 (1978).

    CAS  Article  Google Scholar 

  24. 24

    Manning, G. S. Approximate solutions to some problems in polyelectrolyte theory involving nonuniform charge distributions. Macromolecules 41, 6217–6227 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Gordon, J. C. et al. H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 33, W368–W371 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Li, L., Li, C., Zhang, Z. & Alexov, E. On the ‘dielectric constant’ of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J. Chem. Theory Comput. 9, 2126–2136 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Sham, Y. Y., Muegge, I. & Warshel, N. Effect of protein relaxation on charge–charge interaction and dielectric constants in protein. Biophys. J. 76, A198–A198 (1999).

    Article  Google Scholar 

  28. 28

    Isom, D. G., Castaneda, C. A., Cannon, B. R. & Garcia-Moreno, B. E. Large shifts in pKa values of lysine residues buried inside a protein. Proc. Natl Acad. Sci. USA 108, 5260–5265 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Piliarik, M. & Sandoghdar, V. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 5, 4495 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Arroyo, J. O. et al. Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett. 14, 2065–2070 (2014).

    Article  Google Scholar 

  31. 31

    Wang, Q. & Moerner, W. E. Single-molecule motions enable direct visualization of biomolecular interactions in solution. Nat. Methods 11, 555–558 (2014).

    CAS  Article  Google Scholar 

  32. 32

    Gao, J. M., Mammen, M. & Whitesides, G. M. Evaluating electrostatic contributions to binding with the use of protein charge ladders. Science 272, 535–537 (1996).

    CAS  Article  Google Scholar 

  33. 33

    Winston, R. L. & Fitzgerald, M. C. Mass spectrometry as a readout of protein structure and function. Mass Spectrom. Rev. 16, 165–179 (1997).

    CAS  Article  Google Scholar 

  34. 34

    Sharon, M. & Robinson, C. V. The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem. 76, 167–193 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge M. Borgia for the generous gift of unlabelled ProTαC protein, D. Nettels for help with fluorescence correlation spectroscopy (FCS) instrumentation and providing FCS data-analysis software, S. Chesnov from the Functional Genomics Center Zurich for mass spectrometry analysis, A. Caflisch, A. Soranno, G. Manning and R. Netz for discussions, and the Swiss National Science Foundation and University of Zurich for financial support. Nanofabrication was carried out at the FIRST Center for Micro- and Nanoscience, ETH Zurich.

Author information

Affiliations

Authors

Contributions

F.R. performed the experiments and analysed the data. F.Z. and F.R. purified and labelled the proteins and nucleic acids and performed and analysed the FCS experiments. N.M., M.R., M.W. and A.O. provided the unlabelled Stm-l protein. F.Z. and B.S. contributed biochemical expertise, including protein selection. M.K. conceived the project, performed the theoretical analysis, interpreted the data and wrote the manuscript. F.R., F.Z. and B.S. provided feedback on the manuscript.

Corresponding author

Correspondence to Madhavi Krishnan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4695 kb)

Supplementary information

Supplementary Movie 1 (AVI 1504 kb)

Supplementary information

Supplementary Movie 2 (AVI 842 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruggeri, F., Zosel, F., Mutter, N. et al. Single-molecule electrometry. Nature Nanotech 12, 488–495 (2017). https://doi.org/10.1038/nnano.2017.26

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research