Reproducibility, sharing and progress in nanomaterial databases

Publicly accessible databases are core resources for data-rich research, consolidating field-specific knowledge and highlighting best practices and challenges. Further effective growth of nanomaterial databases requires the concerted efforts of database stewards, researchers, funding agencies and publishers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Data cycle in nanomaterials research.
Figure 2: Streamlining and expediting database growth by direct deposition of the experimental data.

References

  1. 1

    Madhavan, K. et al. Nanotechnol. Rev. 2, 107–117 (2013).

    Article  Google Scholar 

  2. 2

    Morris, S. A., Gaheen, S., Lijowski, M., Heiskanen, M. & Klemm, J. Beilstein J. Nanotechnol. 6, 1580–1593 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Mills, K. C., Murry, D., Guzan, K. A. & Ostraat, M. L. J. Nanoparticle Res. 16, 2219 (2014).

    Article  Google Scholar 

  4. 4

    Read, K. B. et al. PLoS One 10, e0132735 (2015).

    Article  Google Scholar 

  5. 5

    Bourne, P. E., Lorsch, J. R. & Green, E. D. Nature 527, S16–S17 (2015).

    CAS  Article  Google Scholar 

  6. 6

    Ostraat, M. L., Mills, K. C., Guzan, K. A. & Murry, D. Int. J. Nanomedicine 8, Suppl. 1, 7–13 (2013).

    CAS  Google Scholar 

  7. 7

    Thomas, D. G. et al. BMC Biotechnol. 13, 2 (2013).

    Article  Google Scholar 

  8. 8

    Rumble, J., Freiman, S. & Teague, C. Chem. Int. 37, 3–7 (2015).

    CAS  Article  Google Scholar 

  9. 9

    Thomas, D. G., Pappu, R. V. & Baker, N. A. J. Biomed. Inform. 44, 59–74 (2011).

    Article  Google Scholar 

  10. 10

    Centers of Cancer Nanotechnology Excellence (CCNE) (U54) (NIH, 2014); https://grants.nih.gov/grants/guide/rfa-files/RFA-CA-14-013.html

  11. 11

    Nature 515, 7 (2014).

  12. 12

    Nat. Nanotech. 9, 949 (2014).

  13. 13

    Wilkinson, M. D. et al. Sci. Data 3, 160018 (2016).

    Article  Google Scholar 

  14. 14

    Ostraat, M. L., Mills, K. C. & Guzan, K. A. in 2012 IEEE Int. Conf. on Bioinformatics and Biomedicine Workshops 884–888 (IEEE, 2012); http://dx.doi.org/10.1109/BIBMW.2012.6470258

  15. 15

    Liu, R. & Cohen, Y. Beilstein J. Nanotechnol. 6, 2449–51 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Fourches, D., Pu, D. & Tropsha, A. Comb. Chem. High Throughput Screen. 14, 217–225 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Fourches, D. & Tropsha, A. in Nanotoxicology: Progress toward Nanomedicine (eds Monteiro-Riviere, N. A. & Lang Tran, C.) Ch. 7 (CRC, 2014).

    Google Scholar 

  18. 18

    Fourches, D. et al. ACS Nano 4, 5703–5712 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Wu, K., Natarajan, B., Morkowchuk, L. & Breneman, C. in Informatics for Materials Science and Engineering: Data-Driven Discovery for Accelerated Experimentation and Application (ed. Rajan, K.) 385–422 (Butterworth-Heinemann, 2013).

    Google Scholar 

  20. 20

    Suh, C. & Rajan, K. QSAR Comb. Sci. 24, 114–119 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Rajan, K. (ed.) Informatics for Materials Science and Engineering: Data-Driven Discovery for Accelerated Experimentation and Application (Butterworth-Heinemann, 2013).

    Google Scholar 

  22. 22

    Fourches, D. et al. Nanotoxicology 10, 374–83 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Oh, E. et al. Nat. Nanotech. 11, 479–86 (2016).

    CAS  Article  Google Scholar 

  24. 24

    Berman, H. M. et al. Nucleic Acids Res. 28, 235–242 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Bolton, E. E., Wang, Y., Thiessen, P. A. & Bryant, S. H. in Annual Reports in Computational Chemistry Vol. 4, 217–241 (American Chemical Society, 2008).

    Google Scholar 

Download references

Acknowledgements

We thank the National Institute of Biomedical Imaging and Bioengineering, National Institute of Environmental Health Sciences and National Cancer Institute within the National Institutes of Health for funding the development of the Nanomaterials Registry under contract HHSN2682010000022C. In addition, A.T. acknowledges support from NIH grants 5U54CA198999 and U01CA207160.

Author information

Affiliations

Authors

Contributions

The concept of this manuscript resulted from extensive discussions among all authors who co-wrote and co-edited the entire manuscript.

Corresponding author

Correspondence to Alexander Tropsha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tropsha, A., Mills, K. & Hickey, A. Reproducibility, sharing and progress in nanomaterial databases. Nature Nanotech 12, 1111–1114 (2017). https://doi.org/10.1038/nnano.2017.233

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research