Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes

Abstract

Cells interact with the extracellular environment through molecules expressed on the membrane. Disruption of these membrane-bound interactions (or encounters) can result in disease progression. Advances in super-resolution microscopy have allowed membrane encounters to be examined, however, these methods cannot image entire membranes and cannot provide information on the dynamic interactions between membrane-bound molecules. Here, we show a novel DNA probe that can transduce transient membrane encounter events into readable cumulative fluorescence signals. The probe, which translocates from one anchor site to another, mimicking motor proteins, is realized through a toehold-mediated DNA strand displacement reaction. Using this probe, we successfully monitored rapid encounter events of membrane lipid domains using flow cytometry and fluorescence microscopy. Our results show a preference for encounters within the same lipid domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anchoring and operation scheme of DNA probe on live cell membrane.
Figure 2: Locomotion of DNA probe on live cell membrane.
Figure 3: DNA probe competition game to study encounter preference.
Figure 4: Locomotion of DNA probe on model lipid monolayer film.
Figure 5: DNA probe–aptamer conjugates to study membrane protein encounter rates.

Similar content being viewed by others

References

  1. Kholodenko, B. N. Cell signaling dynamics in time and space. Nat. Rev. Mol. Cell. Biol. 7, 165–176 (2006).

    Article  CAS  Google Scholar 

  2. Wymann, M. P. & Schneiter, R. Lipid signaling in disease. Nat. Rev. Mol. Cell. Biol. 9, 162–176 (2008).

    Article  CAS  Google Scholar 

  3. Groves, J. T., Parthasarathy, R. & Forstner, M. B. Fluorescence imaging of membrane dynamics. Annu. Rev. Biomed. Eng. 10, 311–338 (2008).

    Article  CAS  Google Scholar 

  4. Chung, I. et al. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464, 783–787 (2010).

    Article  CAS  Google Scholar 

  5. Endres, N. F. et al. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152, 543–556 (2013).

    Article  CAS  Google Scholar 

  6. Loura, L. M. S. & Prieto, M. FRET in membrane biophysics: an overview. Front. Physiol. 2, 1–11 (2011).

    Article  Google Scholar 

  7. Munro, S. Lipid rafts: elusive or illusive? Cell 115, 377–388 (2003).

    Article  CAS  Google Scholar 

  8. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  Google Scholar 

  9. Hess, S. T. et al. Dynamic clustered distribution of hemagglutinin resolved at 40nm in living cell membranes discriminates between raft theories. Proc. Natl Acad. Sci. USA 104, 17370–17375 (2007).

    Article  CAS  Google Scholar 

  10. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    Article  CAS  Google Scholar 

  11. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  CAS  Google Scholar 

  12. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechonology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    Article  CAS  Google Scholar 

  13. Rudchenko, M. et al. Autonomous molecular cascades for evaluation of cell surfaces. Nat. Nanotech. 8, 580–586 (2013).

    Article  CAS  Google Scholar 

  14. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    Article  CAS  Google Scholar 

  15. Hannestad, J. K. et al. Kinetics of diffusion-mediated DNA hybridization in lipid monolayer films determined by single-molecule fluorescence spectroscopy. ACS Nano 7, 308–315 (2013).

    Article  CAS  Google Scholar 

  16. Liu, H., Kwong, B. & Irvine, D. J. Membrane anchored immunostimulatory oligonucleotides for in vivo cell modification and localized immunotherapy. Angew. Chem. Int. Ed. 50, 7052–7055 (2011).

    Article  CAS  Google Scholar 

  17. Gartner, Z. J. & Bertozzi, C. R. Programmed assembly of 3-dimensional microtissues with defined cellular connectivity. Proc. Natl Acad. Sci. USA 106, 4606–4610 (2009).

    Article  CAS  Google Scholar 

  18. Borisenko, G. G., Zaitseva, M. A., Chuvilin, A. N. & Pozmogova, G. E. DNA modification of live cell surface. Nucleic Acids Res. 37, e28 (2009).

    Article  Google Scholar 

  19. Liu, H. & Johnston, A. P. A programmable sensor to probe the internalization of proteins and nanoparticles in live cells. Angew. Chem. Int. Ed. 52, 5744–5748 (2013).

    Article  CAS  Google Scholar 

  20. Yin, Y. & Zhao, X. Kinetics and dynamics of DNA hybridization. Acc. Chem. Res. 44, 1172–1181 (2011).

    Article  CAS  Google Scholar 

  21. Beales, P. A. & Vanderlick, T. K. Application of nucleic acid-lipid conjugates for the programmable organisation of liposomal modules. Adv. Colloid. Interface Sci. 207, 290–305 (2014).

    Article  CAS  Google Scholar 

  22. Loew, M. et al. Lipid domain specific recruitment of lipophilic nucleic acids. J. Am. Chem. Soc. 132, 16066–16072 (2010).

    Article  CAS  Google Scholar 

  23. Beales, P. A. & Vanderlick, T. K. Partitioning of membrane-anchored DNA between coexisting lipid phases. J. Phys. Chem. B 113, 13678–13686 (2009).

    Article  CAS  Google Scholar 

  24. Hardt, S. L. Rates of diffusion controlled reactions in one, two and three dimensions. Biophys. Chem. 10, 239–243 (1979).

    Article  CAS  Google Scholar 

  25. Tan, W., Donovan, M. J. & Jiang, J. Aptamers from cell-based selection for bioanalytical applications. Chem. Rev. 113, 2842–2862 (2013).

    Article  CAS  Google Scholar 

  26. Tang, Z. et al. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal. Chem. 79, 4900–4907 (2007).

    Article  CAS  Google Scholar 

  27. Mallikaratchy, P. et al. Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt's lymphoma cells. Mol. Cell. Proteomics 6, 2230–2238 (2007).

    Article  CAS  Google Scholar 

  28. Genot, A. J., Zhang, D. Y., Bath, J. & Turberfield, A. J. Remote toehold: a mechanism of flexible control of DNA hybridization kinetics. J. Am. Chem. Soc. 133, 2177–2182 (2011).

    Article  CAS  Google Scholar 

  29. Chandran, H., Gopalkrishnan, N., Phillips, A. & Reif, J. in DNA Computing and Molecular Programming (eds Cardelli, L. & Shih, W.) Ch. 8, 64–83 (Lecture Notes in Computer Science 6937, Springer-Verlag, 2011).

    Book  Google Scholar 

  30. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank X. Fang at Chinese Academy of Sciences, G. Fanucci, V. D. Kleiman and Y. Tseng at University of Florida, and K. Salaita at Emory University for helpful discussions and suggestions. This work is supported by NSFC grants (NSFC 21521063 and NSFC 21327009), and the US National Institutes of Health (GM079359 and CA133086). The work of G.B. was supported in part by a Key Project of the Major Research Plan of NSFC (no. 91130004), a NSFC A3 Project (no.11421110002), NSFC Tianyuan Projects (no. 11426235; no. 11526211), a NSFC Innovative Group Fund (no.11621101) and US NSF FRG DMS-0968360.

Author information

Authors and Affiliations

Authors

Contributions

M.Y., Y.L. and D.H. contributed equally to this work. M.Y., D.H. and W.T. conceived and designed the experiments. M.Y. and Y.L. performed the experiments. M.Y., D.H., L.P. and G.B. analysed the data. M.Y., D.H., Y.L., T.C., C.S.W. and L.Z. synthesized lipid-DNA and other reagents. Y.L., M.Y., L.Q. and Q.L. prepared giant unilamellar vesicles and lipid monolayer. M.Y. and W.T. co-wrote the manuscript. W.T. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Mingxu You or Weihong Tan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, M., Lyu, Y., Han, D. et al. DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes. Nature Nanotech 12, 453–459 (2017). https://doi.org/10.1038/nnano.2017.23

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing