Tunable sieving of ions using graphene oxide membranes


Graphene oxide membranes show exceptional molecular permeation properties, with promise for many applications1,2,3,4,5. However, their use in ion sieving and desalination technologies is limited by a permeation cutoff of 9 Å (ref. 4), which is larger than the diameters of hydrated ions of common salts4,6. The cutoff is determined by the interlayer spacing (d) of 13.5 Å, typical for graphene oxide laminates that swell in water2,4. Achieving smaller d for the laminates immersed in water has proved to be a challenge. Here, we describe how to control d by physical confinement and achieve accurate and tunable ion sieving. Membranes with d from 9.8 Å to 6.4 Å are demonstrated, providing a sieve size smaller than the diameters of hydrated ions. In this regime, ion permeation is found to be thermally activated with energy barriers of 10–100 kJ mol–1 depending on d. Importantly, permeation rates decrease exponentially with decreasing sieve size but water transport is weakly affected (by a factor of <2). The latter is attributed to a low barrier for the entry of water molecules and large slip lengths inside graphene capillaries. Building on these findings, we demonstrate a simple scalable method to obtain graphene-based membranes with limited swelling, which exhibit 97% rejection for NaCl.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Physically confined GO membranes with tunable interlayer spacing.
Figure 2: Tunable ion sieving.
Figure 3: Graphene oxide membrane with limited swelling.


  1. 1

    Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Sun, P. Z., Wang, K. L. & Zhu, H. W. Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv. Mater. 28, 2287–2310 (2016).

    CAS  Article  Google Scholar 

  3. 3

    Liu, G. P., Jin, W. Q. & Xu, N. P. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Akbari, A. et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 7, 10891 (2016).

    CAS  Article  Google Scholar 

  6. 6

    Tansel, B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012).

    CAS  Article  Google Scholar 

  7. 7

    O'Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 7, 11408 (2016).

    CAS  Article  Google Scholar 

  9. 9

    Jain, T. et al. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotech. 10, 1053–1057 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotech. 10, 459–464 (2015).

    CAS  Article  Google Scholar 

  11. 11

    Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Wang, L. D. et al. Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene. Nat. Nanotech. 10, 785–790 (2015).

    CAS  Article  Google Scholar 

  13. 13

    Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    CAS  Article  Google Scholar 

  14. 14

    Sahu, S., Ventra, M. D. & Zwolak, M. Dehydration as a universal mechanism for ion selectivity in graphene and other atomically thin pores. Preprint at http://arXiv.org/abs/1605.03134 (2016).

  15. 15

    Richards, L. A., Schafer, A. I., Richards, B. S. & Corry, B. The importance of dehydration in determining ion transport in narrow pores. Small 8, 1701–1709 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Thomas, M., Corry, B. & Hilder, T. A. What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation? Small 10, 1453–1465 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Song, C. & Corry, B. Intrinsic ion selectivity of narrow hydrophobic pores. J. Phys. Chem. B 113, 7642–7649 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Williams, C. D. & Carbone, P. Selective removal of technetium from water using graphene oxide membranes. Environ. Sci. Technol. 50, 3875–3881 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Feng, J. et al. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).

    CAS  Article  Google Scholar 

  20. 20

    Cohen-Tanugi, D., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Deshmukh, A., Yip, N. Y., Lin, S. H. & Elimelech, M. Desalination by forward osmosis: identifying performance limiting parameters through module-scale modeling. J. Membr. Sci. 491, 159–167 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Das, R., Ali, M. E., Abd Hamid, S. B., Ramakrishna, S. & Chowdhury, Z. Z. Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Wilson, N. R. et al. Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3, 2547–2556 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Loh, K. P., Bao, Q., Eda, G. & Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Liu, H. Y., Wang, H. T. & Zhang, X. W. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv. Mater. 27, 249–254 (2015).

    Article  Google Scholar 

  27. 27

    Sun, P. Z. et al. Highly efficient quasi-static water desalination using monolayer graphene oxide/titania hybrid laminates. NPG Asia Mater. 7, e162 (2015).

    CAS  Article  Google Scholar 

  28. 28

    Hu, M. & Mi, B. X. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Hung, W. S. et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem. Mater. 26, 2983–2990 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Zhang, Y., Zhang, S. & Chung, T. S. Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration. Environ. Sci. Technol. 49, 10235–10242 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Greenspan, L. Humidity fixed-points of binary saturated aqueous-solutions. J. Res. Natl Bur. Stand. Sect. A 81, 89–96 (1977).

    Article  Google Scholar 

  32. 32

    Rezania, B., Severin, N., Talyzin, A. V. & Rabe, J. P. Hydration of bilayered graphene oxide. Nano Lett. 14, 3993–3998 (2014).

    CAS  Article  Google Scholar 

  33. 33

    Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    CAS  Article  Google Scholar 

  34. 34

    Tissandier, M. D. et al. The proton's absolute aqueous enthalpy and Gibbs free energy of solvation from cluster ion solvation data. J. Phys. Chem. A 102, 7787–7794 (1998).

    CAS  Article  Google Scholar 

  35. 35

    Chekli, L . et al. A comprehensive review of hybrid forward osmosis systems: performance, applications and future prospects. J. Membr. Sci. 497, 430–449 (2016).

    CAS  Article  Google Scholar 

  36. 36

    Rockland, L. B. Saturated salt solutions for static control of relative humidity between 5° and 40° C. Anal. Chem. 32, 1375–1376 (1960).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Royal Society and the Engineering and Physical Sciences Research Council, UK (EP/K016946/1 and EP/M506436/1). K.G. acknowledges Marie Curie International Incoming Fellowship. K.S.V. and R.R.N. acknowledge support from BGT Materials Limited.

Author information




R.R.N. designed and supervised the project with J.A. and K.S.V.; J.A. and K.S.V. prepared the samples, performed the measurements and carried out the analysis with help from R.R.N.; J.D., C.D.W. and P.C. carried out MD simulations and data analysis. K.G., Y.S. and C.T.C. helped in sample preparation, characterization and data analysis. E.P. and S.J.H. contributed to sample characterization. A.K.G. participated in discussions and project design. R.R.N., K.S.V., J.A., C.D.W., I.V.G. and A.K.G. wrote the manuscript. All authors contributed to discussions.

Corresponding author

Correspondence to Rahul R. Nair.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1838 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abraham, J., Vasu, K., Williams, C. et al. Tunable sieving of ions using graphene oxide membranes. Nature Nanotech 12, 546–550 (2017). https://doi.org/10.1038/nnano.2017.21

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research