Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-performance semiconductor quantum-dot single-photon sources

Abstract

Single photons are a fundamental element of most quantum optical technologies. The ideal single-photon source is an on-demand, deterministic, single-photon source delivering light pulses in a well-defined polarization and spatiotemporal mode, and containing exactly one photon. In addition, for many applications, there is a quantum advantage if the single photons are indistinguishable in all their degrees of freedom. Single-photon sources based on parametric down-conversion are currently used, and while excellent in many ways, scaling to large quantum optical systems remains challenging. In 2000, semiconductor quantum dots were shown to emit single photons, opening a path towards integrated single-photon sources. Here, we review the progress achieved in the past few years, and discuss remaining challenges. The latest quantum dot-based single-photon sources are edging closer to the ideal single-photon source, and have opened new possibilities for quantum technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Spontaneous parametric down-conversion (SPDC) and QD-based single-photon sources.
Figure 2: Indistinguishability of QD-based single-photon sources.
Figure 3: Extracting single photons.
Figure 4: State of play.
Figure 5: Deterministic device fabrication.

References

  1. 1

    Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Phil. Trans. R. Soc. A 361, 1655–1674 (2003).

    Google Scholar 

  2. 2

    Braunstein, S. L. Squeezing as an irreducible resource. Phys. Rev. A 71, 055801 (2005).

    Google Scholar 

  3. 3

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Google Scholar 

  4. 4

    Bao, N. & Halpern, N. Y. Quantum voting and violation of Arrow's impossibility theorem. Phys. Rev. A 95, 062306 (2017).

    Google Scholar 

  5. 5

    Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).

    Google Scholar 

  6. 6

    Dowling, J., Gatti A. & Sergienko, A. (eds) Quantum imaging. J. Mod. Opt. 53, 5–6 (2006).

    Google Scholar 

  7. 7

    Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    CAS  Article  Google Scholar 

  8. 8

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    CAS  Google Scholar 

  9. 9

    Jozsa, R. & Linden, N. On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. A. 459, 2011–2032 (2003).

    Google Scholar 

  10. 10

    Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).

    Google Scholar 

  11. 11

    Nielsen, M. A. & Chuang, I. L. Quantum Information, Computation and Communication (Cambridge Univ. Press, 2010).

    Google Scholar 

  12. 12

    Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012).

    Google Scholar 

  13. 13

    Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    CAS  Google Scholar 

  14. 14

    Volz, J., Scheucher, M., Junge, C. & Rauschenbeutel, A. Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nat. Photon. 8, 965–970 (2014).

    CAS  Google Scholar 

  15. 15

    Grynberg, G., Aspect, A. & Fabre, C. Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge Univ. Press, 2010).

    Google Scholar 

  16. 16

    Brassard, G., Lütkenhaus, N., Mor, T. & Sanders, B. C. Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000).

    CAS  Google Scholar 

  17. 17

    Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    CAS  Google Scholar 

  18. 18

    Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    CAS  Google Scholar 

  19. 19

    Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nat. Photon. 8, 615–620 (2014).

    CAS  Google Scholar 

  20. 20

    Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

    CAS  Google Scholar 

  21. 21

    Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    CAS  Google Scholar 

  22. 22

    Jin, R.-B. et al. Efficient detection of an ultra-bright single-photon source using superconducting nanowire single-photon detectors. Opt. Commun. 336, 47–54 (2015).

    CAS  Google Scholar 

  23. 23

    Wang, X.-L. et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016).

    Google Scholar 

  24. 24

    Burnham, D. C. & Weinberg, D. L. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970).

    CAS  Google Scholar 

  25. 25

    Kwiat, P. G. & Chiao, R. Y. Observation of a nonclassical Berry's phase for the photon. Phys. Rev. Lett. 66, 588–591 (1991).

    CAS  Google Scholar 

  26. 26

    Fasel, S. et al. High-quality asynchronous heralded single-photon source at telecom wavelength. New J. Phys. 6, 163 (2004).

    Google Scholar 

  27. 27

    Azzini, S. et al. Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express 20, 23100–23107 (2012).

    CAS  Google Scholar 

  28. 28

    Li, Q., Davanço, M. & Srinivasan, K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photon. 10, 406–414 (2016).

    CAS  Google Scholar 

  29. 29

    Kwiat, P. G., Waks, E., White, A. G., Appelbaum, I. & Eberhard, P. H. Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776 (1999).

    CAS  Google Scholar 

  30. 30

    U'Ren, A. B., Silberhorn, C., Banaszek, K. & Walmsley, I. A. Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. Phys. Rev. Lett. 93, 093601 (2004).

    Google Scholar 

  31. 31

    Harder, G. et al. An optimized photon pair source for quantum circuits. Opt. Express 21, 13975–31985 (2013).

    Google Scholar 

  32. 32

    Barbieri, M. et al. Parametric downconversion and optical quantum gates: two's company, four's a crowd. J. Mod. Opt. 56, 209–214 (2009).

    Google Scholar 

  33. 33

    Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    CAS  Google Scholar 

  34. 34

    Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Google Scholar 

  35. 35

    Barbieri, M. Effects of frequency correlation in linear optical entangling gates operated with independent photons. Phys. Rev. A 76, 043825 (2007).

    Google Scholar 

  36. 36

    Brańczyk, A. M., Fedrizzi, A., Stace, T. M., Ralph, T. C. & White, A. G. Engineered optical nonlinearity for quantum light sources. Opt. Express 19, 55–65 (2011).

    Google Scholar 

  37. 37

    Weston, M. M. et al. Efficient and pure femtosecond-pulse-length source of polarization-entangled photons. Opt. Express 24, 10869–10879 (2016).

    CAS  Google Scholar 

  38. 38

    Migdall, A. L., Branning, D. & Castelletto, S. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002).

    Google Scholar 

  39. 39

    Xiong, C. et al. Active temporal multiplexing of indistinguishable heralded single photons. Nat. Commun. 7, 10853 (2016).

    CAS  Google Scholar 

  40. 40

    Mendoza, G. J. et al. Active temporal and spatial multiplexing of photons. Optica 3, 127–132 (2016).

    CAS  Google Scholar 

  41. 41

    Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

    CAS  Google Scholar 

  42. 42

    Diedrich, F. & Walther, H. Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58, 2013–2016 (1987).

    Google Scholar 

  43. 43

    Basché, T., Moerner, W. E., Orrit, M. & Talon, H. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992).

    Google Scholar 

  44. 44

    Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    CAS  Google Scholar 

  45. 45

    Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 273, 87–90 (1996).

    CAS  Google Scholar 

  46. 46

    Sebald, K. et al. Single-photon emission of CdSe quantum dots at temperatures up to 200 K. Appl. Phys. Lett. 81, 2920–2922 (2002).

    CAS  Google Scholar 

  47. 47

    Couteau, C. et al. Correlated photon emission from a single II–VI quantum dot. Appl. Phys. Lett. 85, 6251–6253 (2004).

    CAS  Google Scholar 

  48. 48

    Holmes, M. J., Choi, K., Kako, S., Arita, M. & Arakawa, Y. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14, 982–986 (2014).

    CAS  Google Scholar 

  49. 49

    Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    CAS  Google Scholar 

  50. 50

    Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).

    CAS  Google Scholar 

  51. 51

    Faraon, A., Barclay, P. E., Santori, C., Fu, K.-M. C. & Beausoleil, R. G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nat. Photon. 5, 301–305 (2011).

    CAS  Google Scholar 

  52. 52

    Schukraft, M. et al. Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides. APL Photon. 1, 020801 (2016).

    Google Scholar 

  53. 53

    Riedrich-Möller, J. et al. One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat. Nanotech. 7, 69–74 (2012).

    Google Scholar 

  54. 54

    Zhong, T., Kindem, J. M., Miyazono, E. & Faraon, A. Nanophotonic coherent light–matter interfaces based on rare-earth-doped crystals. Nat. Commun. 6, 8206 (2015).

    CAS  Google Scholar 

  55. 55

    Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotech. 10, 503–506 (2015).

    CAS  Google Scholar 

  56. 56

    Srivastava, A. et al. Optically active quantum dots in monolayer WSe2 . Nat. Nanotech. 10, 491–496 (2015).

    CAS  Google Scholar 

  57. 57

    Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotech. 10, 507–511 (2015).

    CAS  Google Scholar 

  58. 58

    He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotech. 10, 497–502 (2015).

    CAS  Google Scholar 

  59. 59

    Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    CAS  Google Scholar 

  60. 60

    Goldstein, L., Glas, F., Marzin, J. Y., Charasse, M. N. & Roux, G. L. Growth by molecular beam epitaxy and characterization of InAs/GaAs strained layer superlattices. Appl. Phys. Lett. 47, 1099–1101 (1985).

    CAS  Google Scholar 

  61. 61

    Tabuchi, M., Noda, S. & Sasaki, A. in Science and Technology of Mesoscopic Structures (eds Namba, S. et al.) 379–384 (Springer, 1992).

    Google Scholar 

  62. 62

    Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P. & Petroff, P. M. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl. Phys. Lett. 63, 3203–3205 (1993).

    CAS  Google Scholar 

  63. 63

    Solomon, G. S., Trezza, J. A. & Harris, J. S. Effects of monolayer coverage, flux ratio, and growth rate on the island density of InAs islands on GaAs. Appl. Phys. Lett. 66, 3161–3163 (1995).

    CAS  Google Scholar 

  64. 64

    Solomon, G. S., Trezza, J. A. & Harris, J. S. Substrate temperature and monolayer coverage effects on epitaxial ordering of InAs and InGaAs islands on GaAs. Appl. Phys. Lett. 66, 991–993 (1995).

    CAS  Google Scholar 

  65. 65

    Wu, W., Tucker, J. R., Solomon, G. S. & Harris, J. S. Atom-resolved scanning tunneling microscopy of vertically ordered InAs quantum dots. Appl. Phys. Lett. 71, 1083–1085 (1997).

    CAS  Google Scholar 

  66. 66

    Marzin, J.-Y., Gérard, J.-M., Izraël, A., Barrier, D. & Bastard, G. Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (1994).

    CAS  Google Scholar 

  67. 67

    Fafard, S., Leonard, D., Merz, J. L. & Petroff, P. M. Selective excitation of the photoluminescence and the energy levels of ultrasmall InGaAs/GaAs quantum dots. Appl. Phys. Lett. 65, 1388–1390 (1994).

    CAS  Google Scholar 

  68. 68

    Watanabe, K., Koguchi, N. & Gotoh, Y. Frabrication of GaAs quantum dots by modified droplet epitaxy. Jpn J. Appl. Phys. 39, L79–L81 (2000).

    CAS  Google Scholar 

  69. 69

    Kuroda, T. et al. Symmetric quantum dots as efficient sources of highly entangled photons: violation of Bell's inequality without spectral and temporal filtering. Phys. Rev. B 88, 041306 (2013).

    Google Scholar 

  70. 70

    Schmidt, O. G. (ed.) Lateral Alignment of Epitaxial Quantum Dots (Springer-Verlag, 2007).

    Google Scholar 

  71. 71

    Schneider, C. et al. Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration. Nanotechnology 20, 434012 (2009).

    CAS  Google Scholar 

  72. 72

    Dalacu, D. et al. Directed self-assembly of single quantum dots for telecommunication wavelength optical devices. Laser Photon. Rev. 4, 283–299 (2010).

    CAS  Google Scholar 

  73. 73

    Mohan, A. et al. Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics. Small 6, 1268–1272 (2010).

    CAS  Google Scholar 

  74. 74

    Bennett, A. J. et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat. Phys. 6, 947–950 (2010).

    CAS  Google Scholar 

  75. 75

    Trotta, R. et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 7, 10375 (2016).

    CAS  Google Scholar 

  76. 76

    Patel, R. B. et al. Quantum interference of electrically generated single photons from a quantum dot. Nanotechnology 21, 274011 (2010).

    Google Scholar 

  77. 77

    Flagg, E. B. et al. Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010).

    Google Scholar 

  78. 78

    Moreau, E. et al. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 87, 183601 (2001).

    Google Scholar 

  79. 79

    Santori, C., Solomon, G. S., Pelton, M. & Yamamoto, Y. Time-resolved spectroscopy of multiexcitonic decay in an InAs quantum dot. Phys. Rev. B 65, 073310 (2002).

    Google Scholar 

  80. 80

    Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Emission spectrum of a dressed exciton–biexciton complex in a semiconductor quantum dot. Phys. Rev. Lett. 101, 027401 (2008).

    Google Scholar 

  81. 81

    Melet, R. et al. Resonant excitonic emission of a single quantum dot in the Rabi regime. Phys. Rev. B 78, 073301 (2008).

    Google Scholar 

  82. 82

    Jayakumar, H. et al. Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett. 110, 135505 (2013).

    Google Scholar 

  83. 83

    He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotech. 8, 213–217 (2013).

    CAS  Google Scholar 

  84. 84

    Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).

    Google Scholar 

  85. 85

    Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).

    CAS  Google Scholar 

  86. 86

    Flagg, E. B., Polyakov, S. V., Thomay, T. & Solomon, G. S. Dynamics of nonclassical light from a single solid-state quantum emitter. Phys. Rev. Lett. 109, 163601 (2012).

    Google Scholar 

  87. 87

    Giesz, V. et al. Influence of the Purcell effect on the purity of bright single photon sources. Appl. Phys. Lett. 103, 033113 (2013).

    Google Scholar 

  88. 88

    Wei, Y.-J. et al. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage. Nano Lett. 14, 6515–6519 (2014).

    CAS  Google Scholar 

  89. 89

    Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Google Scholar 

  90. 90

    Unsleber, S. et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Opt. Express 24, 8539–8546 (2016).

    CAS  Google Scholar 

  91. 91

    Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    CAS  Google Scholar 

  92. 92

    Young, R. J. et al. Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29–29 (2006).

    Google Scholar 

  93. 93

    Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    CAS  Google Scholar 

  94. 94

    Juska, G., Dimastrodonato, V., Mereni, L. O., Gocalinska, A. & Pelucchi, E. Towards quantum-dot arrays of entangled photon emitters. Nat. Photon. 7, 527–531 (2013).

    CAS  Google Scholar 

  95. 95

    Stevenson, R. M. Magnetic-field-induced reduction of the exciton polarisation splitting in InAs quantum dots. Phys. Rev. B 73, 033306 (2006).

    Google Scholar 

  96. 96

    Zhang, J. et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat. Commun. 6, 10067 (2015).

    CAS  Google Scholar 

  97. 97

    Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect. Phys. Rev. Lett. 103, 217402 (2009).

    Google Scholar 

  98. 98

    Trotta, R., Wildmann, J. S., Zallo, E., Schmidt, O. G. & Rastelli, A. Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. Nano Lett. 14, 3439–3444 (2014).

    CAS  Google Scholar 

  99. 99

    Kiraz, A., Atature, M. & Imamoglu, A. Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing. Phys. Rev. A 69, 032305 (2004).

    Google Scholar 

  100. 100

    Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    CAS  Google Scholar 

  101. 101

    Borri, P. et al. Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001).

    CAS  Google Scholar 

  102. 102

    Kammerer, C. et al. Efficient acoustic phonon broadening in single self-assembled InAs/GaAs quantum dots. Phys. Rev. B 65, 033313 (2001).

    Google Scholar 

  103. 103

    Grange, T. Decoherence in quantum dots due to real and virtual transitions: a nonperturbative calculation. Phys. Rev. B 80, 245310 (2009).

    Google Scholar 

  104. 104

    Thoma, A. et al. exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong–Ou–Mandel experiments. Phys. Rev. Lett. 116, 033601 (2016).

    CAS  Google Scholar 

  105. 105

    Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).

    CAS  Google Scholar 

  106. 106

    Berthelot, A. et al. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nat. Phys. 2, 759–764 (2006).

    CAS  Google Scholar 

  107. 107

    Varoutsis, S. et al. Restoration of photon indistinguishability in the emission of a semiconductor quantum dot. Phys. Rev. B 72, 041303 (2005).

    Google Scholar 

  108. 108

    Grange, T. et al. Reducing phonon-induced decoherence in solid-state single-photon sources with cavity quantum electrodynamics. Phys. Rev. Lett. 118, 253602 (2017).

    CAS  Google Scholar 

  109. 109

    Besombes, L., Kheng, K., Marsal, L. & Mariette, H. Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev. B 63, 155307 (2001).

    Google Scholar 

  110. 110

    Favero, I. et al. Acoustic phonon sidebands in the emission line of single InAs/GaAs quantum dots. Phys. Rev. B 68, 233301 (2003).

    Google Scholar 

  111. 111

    Kaer, P. Decoherence in semiconductor cavity QED systems due to phonon couplings. Phys. Rev. B 90, 035312 (2014).

    Google Scholar 

  112. 112

    Gazzano, O. et al. Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013).

    CAS  Google Scholar 

  113. 113

    Ates, S. et al. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009).

    CAS  Google Scholar 

  114. 114

    Nguyen, H. S. et al. Ultra-coherent single photon source. Appl. Phys. Lett. 99, 261904 (2011).

    Google Scholar 

  115. 115

    Matthiesen, C., Vamivakas, A. N. & Atatuere, M. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).

    Google Scholar 

  116. 116

    Reimer, M. E. Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire. Phys. Rev. B 93, 195316 (2016).

    Google Scholar 

  117. 117

    Kuhlmann, A. V. et al. Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015).

    Google Scholar 

  118. 118

    Loredo, J. C. et al. Scalable performance in solid-state single-photon sources. Optica 3, 433–440 (2016).

    Google Scholar 

  119. 119

    Wang, H. et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).

    Google Scholar 

  120. 120

    Pelton, M. et al. Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

    Google Scholar 

  121. 121

    Purcell, E. M., Torrey, H. C. & Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946).

    CAS  Google Scholar 

  122. 122

    Gerard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

    CAS  Google Scholar 

  123. 123

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    CAS  Google Scholar 

  124. 124

    Haroche, S. & Kleppner, D. Cavity quantum electrodynamics. Phys. Today 42, 24–30 (2008).

    Google Scholar 

  125. 125

    Solomon, G. S., Pelton, M. & Yamamoto, Y. Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. Phys. Rev. Lett. 86, 3903–3906 (2001).

    CAS  Google Scholar 

  126. 126

    Kiraz, A. et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure. Appl. Phys. Lett. 78, 3932–3934 (2001).

    CAS  Google Scholar 

  127. 127

    Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    Google Scholar 

  128. 128

    Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    CAS  Google Scholar 

  129. 129

    Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    CAS  Google Scholar 

  130. 130

    Peter, E. et al. Exciton–photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).

    CAS  Google Scholar 

  131. 131

    Auffèves-Garnier, A., Simon, C., Gérard, J.-M. & Poizat, J.-P. Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. Phys. Rev. A 75, 053823 (2007).

    Google Scholar 

  132. 132

    Arnold, C. et al. Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000. Appl. Phys. Lett. 100, 111111 (2012).

    Google Scholar 

  133. 133

    Schneider, C., Gold, P., Reitzenstein, S., Höfling, S. & Kamp, M. Quantum dot micropillar cavities with quality factors exceeding 250,000. Appl. Phys. B 122, 19 (2016).

    Google Scholar 

  134. 134

    Stoltz, N. G. et al. High-quality factor optical microcavities using oxide apertured micropillars. Appl. Phys. Lett. 87, 031105 (2005).

    Google Scholar 

  135. 135

    Moreau, E. et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001).

    CAS  Google Scholar 

  136. 136

    Strauf, S. et al. High-frequency single-photon source with polarization control. Nat. Photon. 1, 704–708 (2007).

    CAS  Google Scholar 

  137. 137

    Heindel, T. et al. Electrically driven quantum dot–micropillar single photon source with 34% overall efficiency. Appl. Phys. Lett. 96, 011107 (2010).

    Google Scholar 

  138. 138

    Giesz, V. et al. Cavity-enhanced two-photon interference using remote quantum dot sources. Phys. Rev. B 92, 161302 (2015).

    Google Scholar 

  139. 139

    Lermer, M. et al. Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments. Phys. Rev. Lett. 108, 057402 (2012).

    CAS  Google Scholar 

  140. 140

    Laurent, S. et al. Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity. Appl. Phys. Lett. 87, 163107 (2005).

    Google Scholar 

  141. 141

    Madsen, K. H. et al. Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity. Phys. Rev. B 90, 155303 (2014).

    Google Scholar 

  142. 142

    Laucht, A. et al. Electrical control of spontaneous emission and strong coupling for a single quantum dot. New J. Phys. 11, 023034 (2009).

    Google Scholar 

  143. 143

    Bennett, A. J. et al. Giant Stark effect in the emission of single semiconductor quantum dots. Appl. Phys. Lett. 97, 031104 (2010).

    Google Scholar 

  144. 144

    Böckler, C. et al. Electrically driven high-Q quantum dot–micropillar cavities. Appl. Phys. Lett. 92, 091107 (2008).

    Google Scholar 

  145. 145

    Nowak, A. K. et al. Deterministic and electrically tunable bright single-photon source. Nat. Commun. 5, 3240 (2014).

    CAS  Google Scholar 

  146. 146

    Lund-Hansen, T. et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys. Rev. Lett. 101, 113903 (2008).

    CAS  Google Scholar 

  147. 147

    Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photon. 4, 174–177 (2010).

    CAS  Google Scholar 

  148. 148

    Reimer, M. E. et al. Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 737 (2012).

    Google Scholar 

  149. 149

    Laucht, A. et al. A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 011014 (2012).

    Google Scholar 

  150. 150

    Bulgarini, G. et al. Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. Nano Lett. 14, 4102–4106 (2014).

    CAS  Google Scholar 

  151. 151

    Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    CAS  Google Scholar 

  152. 152

    Babinec, T. M. et al. A diamond nanowire single-photon source. Nat. Nanotech. 5, 195–199 (2010).

    CAS  Google Scholar 

  153. 153

    Bleuse, J. et al. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett. 106, 103601 (2011).

    Google Scholar 

  154. 154

    Hoang, T. B. et al. Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides. Appl. Phys. Lett. 100, 061122 (2012).

    Google Scholar 

  155. 155

    Munsch, M. et al. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam. Phys. Rev. Lett. 110, 177402 (2013).

    Google Scholar 

  156. 156

    Gazzano, O. et al. Single photon source using confined Tamm plasmon modes. Appl. Phys. Lett. 100, 232111 (2012).

    Google Scholar 

  157. 157

    Kumano, H. et al. Enhanced photon extraction from a quantum dot induced by a silver microcolumnar photon reflector. Appl. Phys. Express 6, 062801 (2013).

    Google Scholar 

  158. 158

    Sapienza, L., Davanço, M., Badolato, A. & Srinivasan, K. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun. 6, 7833 (2015).

    CAS  Google Scholar 

  159. 159

    Gschrey, M. et al. In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy. Appl. Phys. Lett. 102, 251113 (2013).

    Google Scholar 

  160. 160

    Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 6, 7662 (2015).

    CAS  Google Scholar 

  161. 161

    Portalupi, S. L. et al. Bright phonon-tuned single-photon source. Nano Lett. 15, 6290–6294 (2015).

    CAS  Google Scholar 

  162. 162

    Gazzano, O. et al. Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source. Phys. Rev. Lett. 110, 250501 (2013).

    CAS  Google Scholar 

  163. 163

    Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

    CAS  Google Scholar 

  164. 164

    Takemoto, K. et al. Transmission experiment of quantum keys over 50 km using high-performance quantum-dot single-photon source at 1.5 μm wavelength. Appl. Phys. Express 3, 092802 (2010).

    Google Scholar 

  165. 165

    Schneider, C. et al. Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot. Appl. Phys. Lett. 100, 091108 (2012).

    Google Scholar 

  166. 166

    Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    CAS  Google Scholar 

  167. 167

    Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    CAS  Google Scholar 

  168. 168

    Dousse, A. et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett. 101, 267404 (2008).

    CAS  Google Scholar 

  169. 169

    Sawicki, K. et al. Single-color, in situ photolithography marking of individual CdTe/ZnTe quantum dots containing a single Mn2+ ion. Appl. Phys. Lett. 106, 012101 (2015).

    Google Scholar 

  170. 170

    Sartison, M. et al. Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy. Sci. Rep. 7, 39916 (2017).

    CAS  Google Scholar 

  171. 171

    Dousse, A. et al. Scalable implementation of strongly coupled cavity-quantum dot devices. Appl. Phys. Lett. 94, 121102 (2009).

    Google Scholar 

  172. 172

    Lee, K. H. et al. Registration of single quantum dots using cryogenic laser photolithography. Appl. Phys. Lett. 88, 193106 (2006).

    Google Scholar 

  173. 173

    Thon, S. M. et al. Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity. Appl. Phys. Lett. 94, 111115 (2009).

    Google Scholar 

  174. 174

    Steinmetz, T. et al. Stable fiber-based Fabry-Pérot cavity. Appl. Phys. Lett. 89, 111110 (2006).

    Google Scholar 

  175. 175

    Muller, A., Flagg, E. B., Metcalfe, M., Lawall, J. & Solomon, G. S. Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity. Appl. Phys. Lett. 95, 173101 (2009).

    Google Scholar 

  176. 176

    Miguel-Sánchez, J. et al. Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry–Perot cavity. New J. Phys. 15, 045002 (2013).

    Google Scholar 

  177. 177

    Greuter, L. et al. A small mode volume tunable microcavity: development and characterization. Appl. Phys. Lett. 105, 121105 (2014).

    Google Scholar 

  178. 178

    Göbel, E. O. & Siegner, U. in Quantum Metrology: Foundation of Units and Measurements 191–206 (Wiley-VCH, 2015).

    Google Scholar 

  179. 179

    White, A. G., Mitchell, J. R., Nairz, O. & Kwiat, P. G. “Interaction-free” imaging. Phys. Rev. A 58, 605–613 (1998).

    CAS  Google Scholar 

  180. 180

    Loredo, J. C. et al. Boson sampling with single-photon Fock states from a bright solid-state source. Phys. Rev. Lett. 118, 130503 (2017).

    CAS  Google Scholar 

  181. 181

    Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photon. 4, 632–635 (2010).

    CAS  Google Scholar 

  182. 182

    Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013).

    CAS  Google Scholar 

  183. 183

    Akopian, N., Wang, L., Rastelli, A., Schmidt, O. G. & Zwiller, V. Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot. Nat. Photon. 5, 230–233 (2011).

    CAS  Google Scholar 

  184. 184

    Kim, J.-H., Cai, T., Richardson, C. J. K., Leavitt, R. P. & Waks, E. Two-photon interference from a bright single-photon source at telecom wavelengths. Optica 3, 577–584 (2016).

    CAS  Google Scholar 

  185. 185

    Takemoto, K. et al. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors. Sci. Rep. 5, 14383 (2015).

    CAS  Google Scholar 

  186. 186

    Zaske, S. et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).

    Google Scholar 

  187. 187

    Ates, S. et al. Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012).

    Google Scholar 

  188. 188

    Pelc, J. S. et al. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. Opt. Express 20, 27510 (2012).

    CAS  Google Scholar 

  189. 189

    Brown, R. H. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956).

    Google Scholar 

  190. 190

    Stevens, M. in Single-Photon Generation and Detection (eds Migdall, A. et al.) Vol. 45 25–68 (Academic Press, 2013).

    Google Scholar 

Download references

Acknowledgements

P.S. acknowledges partial support from the ERC Starting Grant No. 277885 QD-CQED. A.W. acknowledges partial support from the Australian Research Centres of Excellence for Engineered Quantum Systems (CE110001013) and Quantum Computing and Communication Technology (CE110001027). G.S. acknowledges partial support from the PFC@JQI.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pascale Senellart.

Ethics declarations

Competing interests

P.S. is co-founder and scientific advisor of the single-photon-source company Quandela.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nature Nanotech 12, 1026–1039 (2017). https://doi.org/10.1038/nnano.2017.218

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research