Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inner- and outer-wall sorting of double-walled carbon nanotubes


Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO–BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Separation of DWCNTs via gel permeation.
Figure 2: Absorption spectra of the four different types of DWCNT.
Figure 4: Transconductance measurements of four types of DWCNT.
Figure 3: Radial breathing mode resonance Raman maps.


  1. 1

    Moore, K. E., Tune, D. D. & Flavel, B. S. Double-walled carbon nanotube processing. Adv. Mater. 27, 3105–3137 (2015).

    CAS  Article  Google Scholar 

  2. 2

    Okada, S. & Oshiyama, A. Curvature-induced metallization of double-walled semiconducting zigzag carbon nanotubes. Phys. Rev. Lett. 91, 216801 (2003).

    Article  Google Scholar 

  3. 3

    Zólyomi, V. et al. Semiconductor-to-metal transition of double walled carbon nanotubes induced by inter-shell interaction. Phys. Status Solidi B 243, 3476–3479 (2006).

    Article  Google Scholar 

  4. 4

    Kalbac, M., Green, A. A., Hersam, M. C. & Kavan, L. Probing charge transfer between shells of double-walled carbon nanotubes sorted by outer-wall electronic type. Chem. Eur. J. 17, 9806–9815 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Shi, W. et al. Superconductivity in bundles of double-wall carbon nanotubes. Sci. Rep. 2, 625 (2012).

    Article  Google Scholar 

  6. 6

    Noffsinger, J. & Cohen, M. L. Electron–phonon coupling and superconductivity in double-walled carbon nanotubes. Phys. Rev. B 83, 165420 (2011).

    Article  Google Scholar 

  7. 7

    Liu, K. et al. Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nat. Phys. 10, 737–742 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Zhang, R. et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotech. 8, 912–916 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Bouilly, D. et al. Wall-selective probing of double-walled carbon nanotubes using covalent functionalization. ACS Nano 5, 4927–4934 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Green, A. A. & Hersam, M. C. Properties and application of double-walled carbon nanotubes sorted by outer-wall electronic type. ACS Nano 5, 1459–1467 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Green, A. A. & Hersam, M. C. Processing and properties of highly enriched double-wall carbon nanotubes. Nat. Nanotech. 4, 64–70 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Moore, K. E. et al. Sorting of double-walled carbon nanotubes according to their outer wall electronic type via a gel permeation method. ACS Nano 9, 3849–3857 (2015).

    CAS  Article  Google Scholar 

  13. 13

    Streit, J. et al. Separation of double-wall carbon nanotubes by electronic type and diameter. Nanoscale 9, 2531–2540 (2017).

    CAS  Article  Google Scholar 

  14. 14

    Hároz, E. H. et al. Fundamental optical processes in armchair carbon nanotubes. Nanoscale 5, 1411–1439 (2013).

    Article  Google Scholar 

  15. 15

    Weisman, R. B. & Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett. 3, 1235–1238 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Flavel, B. S. et al. Separation of single-walled carbon nanotubes with a gel permeation chromatography system. ACS Nano 8, 1817–1826 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Mistry, K. S., Larsen, B. A. & Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 7, 2231–2239 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Nish, A., Hwang, J.-Y., Doig, J. & Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotech. 2, 640–646 (2007).

    CAS  Article  Google Scholar 

  19. 19

    O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Chiang, I. et al. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 105, 8297–8301 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Maultzsch, J., Telg, H., Reich, S. & Thomsen, C. Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment. Phys. Rev. B 72, 205438 (2005).

    Article  Google Scholar 

  22. 22

    Araujo, P. T. et al. Third and fourth optical transitions in semiconducting carbon nanotubes. Phys. Rev. Lett. 98, 067401 (2007).

    Article  Google Scholar 

  23. 23

    Pesce, P. et al. Calibrating the single-wall carbon nanotube resonance Raman intensity by high resolution transmission electron microscopy for a spectroscopy-based diameter distribution determination. Appl. Phys. Lett. 96, 051910 (2010).

    Article  Google Scholar 

  24. 24

    Hirschmann, T. C. et al. Role of intertube interactions in double- and triple-walled carbon nanotubes. ACS Nano 8, 1330–1341 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Tulevski, G. S., Franklin, A. D. & Afzali, A. High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. ACS Nano 7, 2971–2976 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Liu, H., Nishide, D., Tanaka, T. & Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2, 309 (2011).

    Article  Google Scholar 

  27. 27

    Wei, X. J. et al. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra. Nature Commun. 7, 9 (2016).

    Google Scholar 

  28. 28

    Liu, K. et al. Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes. Nat. Commun. 4, 1375 (2013).

    Article  Google Scholar 

  29. 29

    Wang, H. et al. Solvent effects on polymer sorting of carbon nanotubes with applications in printed electronics. Small 11, 126–133 (2015).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge the experimental assistance of J. Zaumseil and S. Grimm and thank K. Moore and A. Blanch for discussions. B.S.F. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, under grants nos. FL 834/1-1 and FL 834/2-1). R.K. acknowledges funding by the DFG under INST 163/354-1 FUGG. R.K. and F.H. acknowledge support by the Helmholtz Association through the STN programme. G.G. and S.R. acknowledge the German Research Foundation (DFG, via SFB 658, subproject A6) and Focus Area NanoScale of the Freie Universität Berlin for financial support.

Author information




B.S.F., H.L. and F.H. devised and performed the DWCNT separation. G.G., S.W., A.J., R.K., S.R., H.L. and B.S.F. performed and analysed the resonance Raman maps. TEM measurements were performed by V.S.K.C., S.K.C.N., H.L. and B.S.F. All authors contributed to the preparation of the final manuscript.

Corresponding authors

Correspondence to Han Li or Benjamin Scott Flavel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 16396 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Gordeev, G., Wasserroth, S. et al. Inner- and outer-wall sorting of double-walled carbon nanotubes. Nature Nanotech 12, 1176–1182 (2017).

Download citation


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research