Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards phase-coherent caloritronics in superconducting circuits

Abstract

The emerging field of phase-coherent caloritronics (from the Latin word calor, heat) is based on the possibility of controlling heat currents by using the phase difference of the superconducting order parameter. The goal is to design and implement thermal devices that can control energy transfer with a degree of accuracy approaching that reached for charge transport by contemporary electronic components. This can be done by making use of the macroscopic quantum coherence intrinsic to superconducting condensates, which manifests itself through the Josephson effect and the proximity effect. Here, we review recent experimental results obtained in the realization of heat interferometers and thermal rectifiers, and discuss a few proposals for exotic nonlinear phase-coherent caloritronic devices, such as thermal transistors, solid-state memories, phase-coherent heat splitters, microwave refrigerators, thermal engines and heat valves. Besides being attractive from the fundamental physics point of view, these systems are expected to have a vast impact on many cryogenic microcircuits requiring energy management, and possibly lay the first stone for the foundation of electronic thermal logic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical picture at the basis of phase-coherent caloritronics.
Figure 2: Josephson heat interferometers.
Figure 3: Thermal transistors and thermal rectifiers.
Figure 4: Superconducting proximity structures.
Figure 5: Photonic heat transistors.
Figure 6: Future directions.

Similar content being viewed by others

References

  1. Dubi, Y. & Di Ventra, M. Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131–155 (2011).

    Article  CAS  Google Scholar 

  2. Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).

    Article  CAS  Google Scholar 

  3. Meschke, M., Guichard, W. & Pekola, J. P. Single-mode heat conduction by photons. Nature 444, 187–190 (2006).

    Article  CAS  Google Scholar 

  4. Jezouin, S. et al. Quantum limit of heat flow across a single electronic channel. Science 342, 601–604 (2013).

    Article  CAS  Google Scholar 

  5. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    Article  CAS  Google Scholar 

  6. Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78, 217–274 (2006).

    Article  CAS  Google Scholar 

  7. Muhonen, J. T., Meschke, M. & Pekola, J. P. Micrometre-scale refrigerators. Rep. Prog. Phys. 75, 046501 (2012).

    Article  Google Scholar 

  8. Tan, K. Y. et al. Quantum circuit refrigerator. Nat. Commun. 8, 15189 (2017).

    Article  CAS  Google Scholar 

  9. Li, N. et al. Phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012).

    Article  Google Scholar 

  10. Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).

    Article  CAS  Google Scholar 

  11. Tian, H. et al. A novel solid-state thermal rectifier based on reduced graphene oxide. Sci. Rep. 2, 523 (2012).

    Article  CAS  Google Scholar 

  12. Eom, J., Chien, C. J. & Chandrasekhar, V. Phase dependent thermopower in Andreev interferometers. Phys. Rev. Lett. 81, 437–440 (1998).

    Article  CAS  Google Scholar 

  13. Dikin, D. A., Jung, S. & Chandrasekhar, V. Low-temperature thermal properties of mesoscopic normal-metal/superconductor heterostructures. Phys. Rev. B 65, 012511 (2001).

    Article  CAS  Google Scholar 

  14. Jiang, Z. & Chandrasekhar, V. Quantitative measurements of the thermal resistance of Andreev interferometers. Phys. Rev. B 72, 020502 (2005).

    Article  CAS  Google Scholar 

  15. Jiang, Z. & Chandrasekhar, V. Thermal conductance of Andreev interferometers. Phys. Rev. Lett. 94, 147002 (2005).

    Article  CAS  Google Scholar 

  16. Bezuglyi, E. V. & Vinokur, V. Heat transport in proximity structures. Phys. Rev. Lett. 91, 137002 (2003).

    Article  CAS  Google Scholar 

  17. Giazotto, F. & Martínez-Pérez, M. J. The Josephson heat interferometer. Nature 492, 401–405 (2012).

    Article  CAS  Google Scholar 

  18. Martínez-Pérez, M. J., Solinas, P. & Giazotto, F. Coherent caloritronics in Josephson-based nanocircuits. J. Low Temp. Phys. 175, 813–837 (2014).

    Article  CAS  Google Scholar 

  19. Maki, K. & Griffin, A. Entropy transport between two superconductors by electron tunneling. Phys. Rev. Lett. 15, 921–923 (1965).

    Article  CAS  Google Scholar 

  20. Giazotto, F. & Martínez-Pérez, M. J. Phase-controlled superconducting heat-flux quantum modulator. Appl. Phys. Lett. 101, 102601 (2012).

    Article  CAS  Google Scholar 

  21. Martínez-Pérez, M. J. & Giazotto, F. A quantum diffractor for thermal flux. Nat. Commun. 5, 3579 (2014).

    Article  CAS  Google Scholar 

  22. Martínez-Pérez, M. J., Fornieri, A. & Giazotto, F. Rectification of electronic heat current by a hybrid thermal diode. Nat. Nanotech. 10, 303–307 (2015).

    Article  CAS  Google Scholar 

  23. Fornieri, A., Blanc, C., Bosisio, R., D'Ambrosio, S. & Giazotto, F. Nanoscale phase engineering of thermal transport with a Josephson heat modulator. Nat. Nanotech. 11, 258–262 (2016).

    Article  CAS  Google Scholar 

  24. Fornieri, A., Timossi, G., Virtanen, P., Solinas, P. & Giazotto, F. 0–π phase-controllable thermal Josephson junction. Nat. Nanotech. 12, 425–429 (2017).

    Article  CAS  Google Scholar 

  25. Giazotto, F., Peltonen, J. T., Meschke, M. & Pekola, J. P. Superconducting quantum interference proximity transistor. Nat. Phys. 6, 254–259 (2010).

    Article  CAS  Google Scholar 

  26. Ronzani, A., Altimiras, C. & Giazotto, F. Highly sensitive superconducting quantum interference proximity transistor. Phys. Rev. Appl. 2, 024005 (2014).

    Article  CAS  Google Scholar 

  27. D'Ambrosio, S., Meissner, M., Blanc, C., Ronzani, A. & Giazotto, F. Normal metal tunnel junction-based superconducting quantum interference proximity transistor. Appl. Phys. Lett. 107, 113110 (2015).

    Article  CAS  Google Scholar 

  28. Zhou, F., Charlat, P., Spivak, B. & Pannetier, B. Density of states in superconductor-normal metal-superconductor junctions. J. Low Temp. Phys. 110, 841–850 (1998).

    Article  CAS  Google Scholar 

  29. le Sueur, H., Joyez, P., Pothier, H., Urbina, C. & Esteve, D. Phase controlled superconducting proximity effect probed by tunneling spectroscopy. Phys. Rev. Lett. 100, 197002 (2008).

    Article  CAS  Google Scholar 

  30. Strambini, E., Bergeret, F. S. & Giazotto, F. Proximity nanovalve with large phase-tunable thermal conductance. Appl. Phys. Lett. 105, 082601 (2014).

    Article  CAS  Google Scholar 

  31. Ojanen, T. & Jauho, A. P. Mesoscopic photon heat transistor. Phys. Rev. Lett. 100, 155902 (2008).

    Article  CAS  Google Scholar 

  32. Pascal, L. M. A., Courtois, H. & Hekking, F. W. J. Circuit approach to photonic heat transport. Phys. Rev. B 83, 125113 (2011).

    Article  CAS  Google Scholar 

  33. Wellstood, F. C., Urbina, C. & Clarke, J. Hot-electron effects in metals. Phys. Rev. B 49, 5942–5955 (1994).

    Article  CAS  Google Scholar 

  34. Timofeev, A. V. et al. Recombination-limited energy relaxation in a Bardeen–Cooper–Schrieffer superconductor. Phys. Rev. Lett. 102, 017003 (2009).

    Article  CAS  Google Scholar 

  35. Taskinen, L. J. & Maasilta, I. J. Improving the performance of hot-electron bolometers and solid state coolers with disordered alloys. Appl. Phys. Lett. 89, 143511 (2006).

    Article  CAS  Google Scholar 

  36. Josephson, B. D. Possible new effects in superconductive tunneling. Phys. Lett. 1, 251–253 (1962).

    Article  Google Scholar 

  37. Guttman, G. D., Nathanson, B., Ben-Jacob, E. & Bergman, D. J. Phase-dependent thermal transport in Josephson junctions. Phys. Rev. B 55, 3849–3855 (1997).

    Article  CAS  Google Scholar 

  38. Zhao, E., Löfwander, T. & Sauls, J. A. Heat transport through Josephson point contacts. Phys. Rev. B 69, 134503 (2004).

    Article  CAS  Google Scholar 

  39. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, 1996).

    Google Scholar 

  40. Barone, A. & Paternò, G. Physics and Applications of the Josephson Effect (Wiley, 1982).

    Book  Google Scholar 

  41. Pop, I. M. et al. Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles. Nature 508, 369–372 (2014).

    Article  CAS  Google Scholar 

  42. Giazotto, F., Martínez-Pérez, M. J. & Solinas, P. Coherent diffraction of thermal currents. Phys. Rev. B 88, 094506 (2013).

    Article  CAS  Google Scholar 

  43. Martínez-Pérez, M. J. & Giazotto, F. Fully balanced heat interferometer. Appl. Phys. Lett. 102, 092602 (2013).

    Article  CAS  Google Scholar 

  44. Bosisio, R. et al. A magnetic thermal switch for heat management at the nanoscale. Phys. Rev. B 91, 205420 (2015).

    Article  CAS  Google Scholar 

  45. Ben-Abdallah, P., Belarouci, A., Frechette, L. & Biehs, S.A. Heat flux splitter for near-field thermal radiation. Appl. Phys. Lett. 107, 053109 (2015).

    Article  CAS  Google Scholar 

  46. Martínez-Pérez, M. J. & Giazotto, F. Efficient phase-tunable Josephson thermal rectifier. Appl. Phys. Lett. 102, 182602 (2013).

    Article  CAS  Google Scholar 

  47. Ren, J., Hänggi, P. & Li, B. Berryphaseinduced heat pumping and its impact on the fluctuation theorem. Phys. Rev. Lett. 104, 170601 (2010).

    Article  CAS  Google Scholar 

  48. Valenzuela, S. O. et al. Microwave-induced cooling of a superconducting qubit. Science 314, 1589–1592 (2006).

    Article  CAS  Google Scholar 

  49. Solinas, P., Bosisio, R. & Giazotto, F. Microwave quantum refrigeration based on the Josephson effect. Phys. Rev. B 93, 224521 (2016).

    Article  CAS  Google Scholar 

  50. Campisi, M., Pekola, J. & Fazio, R. Nonequilibrium fluctuations in quantum heat engines: theory, example, and possible solid state experiments. New J. Phys. 17, 035012 (2015).

    Article  Google Scholar 

  51. Niskanen, A. O., Nakamura, Y. & Pekola J. Information entropic superconducting microcooler. Phys. Rev. B 76, 174523 (2007).

    Article  CAS  Google Scholar 

  52. Quan, H. T., Wang, Y. D., Liu, Y.-x., Sun, C. P. & Nori, F. Maxwell's Demon assisted thermodynamic cycle in superconducting quantum circuits. Phys. Rev. Lett. 97, 180402 (2006).

    Article  CAS  Google Scholar 

  53. Fornieri, A., Timossi, G., Bosisio, R., Solinas, P. & Giazotto, F. Negative differential thermal conductance and heat amplification in superconducting hybrid devices. Phys. Rev. B 93, 134508 (2016).

    Article  CAS  Google Scholar 

  54. Fornieri, A., Martínez-Pérez, M. J. & Giazotto, F. Electronic heat current rectification in hybrid superconducting devices. AIP Adv. 5, 053301 (2015).

    Article  Google Scholar 

  55. Paolucci, F., Marchegiani, G., Strambini, E. & Giazotto, F. Phase-tunable temperature amplifier. Europhys. Lett. 118, 68004 (2017).

    Article  CAS  Google Scholar 

  56. Fornieri, A., Martínez-Pérez, M. J. & Giazotto, F. A normal metal tunnel-junction heat diode. Appl. Phys. Lett. 104, 183108 (2014).

    Article  CAS  Google Scholar 

  57. Giazotto, F. & Bergeret, F. S. Thermal rectification of electrons in hybrid normal metal–superconductor nanojunctions. Appl. Phys. Lett. 103, 242602 (2013).

    Article  CAS  Google Scholar 

  58. de Gennes, P. G. & Saint-James, D. Elementary excitations in the vicinity of a normal metal–superconducting metal contact. Phys. Lett. 4, 151–152 (1963).

    Article  CAS  Google Scholar 

  59. Usadel, K. D. Generalized diffusion equation for superconducting alloys. Phys. Rev. Lett. 25, 507–509 (1970).

    Article  CAS  Google Scholar 

  60. Virtanen, P., Ronzani, A. & Giazotto, F. Spectral characteristics of a fully-superconducting SQUIPT. Phys. Rev. B 95, 144512 (2017).

    Article  Google Scholar 

  61. Rabani, H., Taddei, F., Bourgeois, O., Fazio, R. & Giazotto, F. Phase-dependent electronic specific heat of mesoscopic Josephson junctions. Phys. Rev. B 78, 012503 (2008).

    Article  CAS  Google Scholar 

  62. Rabani, H., Taddei, F., Giazotto, F. & Fazio, R. Influence of interface transmissivity and inelastic scattering on the electronic entropy and specific heat of diffusive superconductor–normal metal–superconductor Josephson junctions. J. Appl. Phys. 105, 093904 (2009).

    Article  CAS  Google Scholar 

  63. Heikkilä, T. T. & Giazotto, F. Phase sensitive electron–phonon coupling in a superconducting proximity structure. Phys. Rev. B 79, 094514 (2009).

    Article  CAS  Google Scholar 

  64. Schmidt, D. R., Schoelkopf, R. J. & Cleland, A. N. Photon-mediated thermal relaxation of electrons in nanostructures. Phys. Rev. Lett. 93, 045901 (2004).

    Article  CAS  Google Scholar 

  65. Paolucci, F., Timossi, G., Solinas, P. & Giazotto, F. Coherent manipulation of thermal transport by tunable electron–photon and electron–phonon interaction. J. Appl. Phys. 121, 244305 (2017).

    Article  CAS  Google Scholar 

  66. Bosisio, R., Solinas, P., Braggio, A. & Giazotto, F. Photonic heat conduction in Josephson-coupled Bardeen–Cooper–Schrieffer superconductors. Phys. Rev. B 93, 144512 (2016).

    Article  CAS  Google Scholar 

  67. Partanen, M. et al. Quantum-limited heat conduction over macroscopic distances. Nat. Phys. 12, 460–464 (2016).

    Article  CAS  Google Scholar 

  68. Ruokola, T., Ojanen, T. & Jauho, A.-P. Thermal rectification in nonlinear quantum circuits. Phys. Rev. B 79, 144306 (2009).

    Article  CAS  Google Scholar 

  69. Wei, J. et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nat. Nanotech. 3, 496–500 (2008).

    Article  CAS  Google Scholar 

  70. Govenius, J., Lake, R. E., Tan, K. Y. & Möttönen, M. Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions. Phys. Rev. Lett. 117, 030802 (2016).

    Article  CAS  Google Scholar 

  71. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information, (Cambridge Univ. Press, 2002).

    Google Scholar 

  72. Guarcello, C., Solinas, P., Di Ventra, M. & Giazotto, F. Hysteretic superconducting heat-flux quantum modulator. Phys. Rev. Appl. 7, 044021 (2017).

    Article  Google Scholar 

  73. Guarcello, C., Solinas, P., Braggio, A., Di Ventra, M. & Giazotto, F. A Josephson thermal memory. Preprint at https://arxiv.org/abs/1706.05323 (2017).

  74. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  75. Mastomäki, J. et al. InAs nanowire superconducting tunnel junctions: quasiparticle spectroscopy, thermometry and nanorefrigeration. Nano Res. 10, 3468–3475 (2017).

    Article  CAS  Google Scholar 

  76. Yokoyama, T., Linder, J. & Sudbø, A. Heat transport by Dirac fermions in nor- mal/superconducting graphene junctions. Phys. Rev. B 77, 132503 (2008).

    Article  CAS  Google Scholar 

  77. Rainis, D., Taddei, F., Dolcini, F., Polini, M. & Fazio, R. Andreev reflection in graphene nanoribbons. Phys. Rev. B 79, 115131 (2009).

    Article  CAS  Google Scholar 

  78. Kawabata, S., Ozaeta, A., Vasenko, A. S., Hekking, F. W. J. & Bergeret, F. S. Efficient electron refrigeration using superconductor/spin-filter devices. Appl. Phys. Lett. 103, 032602 (2013).

    Article  CAS  Google Scholar 

  79. Bergeret, F. S. & Giazotto, F. Manifestation of a spin-splitting field in a thermally biased Josephson junction. Phys. Rev. B 89, 054505 (2014).

    Article  CAS  Google Scholar 

  80. Bergeret, F. S. & Giazotto, F. Phase-dependent heat transport through magnetic Josephson tunnel junctions. Phys. Rev. B 88, 014515 (2013).

    Article  CAS  Google Scholar 

  81. Giazotto, F. & Bergeret, F. S. Phase-tunable colossal magnetothermal resistance in ferromagnetic Josephson valves. Appl. Phys. Lett. 102, 132603 (2013).

    Article  CAS  Google Scholar 

  82. Wang, Z., Qi, X.-L. & Zhang, S.-C. Topological field theory and thermal responses of interacting topological superconductors. Phys. Rev. B 84, 014527 (2011).

    Article  CAS  Google Scholar 

  83. Ren, J. & Zhu, J.-X. Anomalous energy transport across topological insulator superconductor junctions. Phys. Rev. B 87, 165121 (2013).

    Article  CAS  Google Scholar 

  84. Ren, J. & Zhu, J.-X. Asymmetric Andreev reflection induced electrical and thermal Hall-like effects in metal/anisotropic superconductor junctions. Phys. Rev. B 89, 064512 (2014).

    Article  CAS  Google Scholar 

  85. Sothmann, B. & Hankiewicz, E. M. Fingerprint of topological Andreev bound states in phase- dependent heat transport. Phys. Rev. B 94, 081407(R) (2016).

    Article  CAS  Google Scholar 

  86. Sothmann, B., Giazotto, F. & Hankiewicz, E. M. High-efficiency thermal switch based on topological Josephson junctions. New J. Phys. 19, 023056 (2017).

    Article  CAS  Google Scholar 

  87. Pekola, J. Towards quantum thermodynamics in electronic circuits. Nat. Phys. 11, 118–123 (2015).

    Article  CAS  Google Scholar 

  88. Giazotto, F., Heikkilä, T. T. & Bergeret, F. S. Very large thermophase in ferromagnetic Josephson junctions. Phys. Rev. Lett. 114, 067001 (2015).

    Article  Google Scholar 

  89. Giazotto, F., Robinson, J. W. A., Moodera, J. S. & Bergeret, F. S. Proposal for a phase-coherent thermoelectric transistor. Appl. Phys. Lett. 105, 062602 (2014).

    Article  CAS  Google Scholar 

  90. Kleeorin, Y., Meir, Y., Giazotto, F. & Dubi, Y. Large tunable thermophase in superconductor–quantum dot–superconductor Josephson junctions. Sci. Rep. 6, 35116 (2016).

    Article  CAS  Google Scholar 

  91. Dynes, R. C., Narayanamurty, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. P. Pekola and M. Meschke for providing experimental data. We also thank F. Paolucci, G. Timossi, E. Strambini and L. Casparis for discussions. The MIUR-FIRB2013–Project Coca (grant no. RBFR1379UX) and the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 615187—COMANCHE are acknowledged for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Giazotto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fornieri, A., Giazotto, F. Towards phase-coherent caloritronics in superconducting circuits. Nature Nanotech 12, 944–952 (2017). https://doi.org/10.1038/nnano.2017.204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing