Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hot carrier-enhanced interlayer electron–hole pair multiplication in 2D semiconductor heterostructure photocells


Strong electronic interactions can result in novel particle–antiparticle (electron–hole, e–h) pair generation effects1, which may be exploited to enhance the photoresponse of nanoscale optoelectronic devices. Highly efficient e–h pair multiplication has been demonstrated in several important nanoscale systems, including nanocrystal quantum dots2,3,4,5,6, carbon nanotubes7,8,9 and graphene10,11,12,13. The small Fermi velocity and nonlocal nature of the effective dielectric screening in ultrathin layers of transition-metal dichalcogenides (TMDs) indicates that e–h interactions are very strong14,15,16, so high-efficiency generation of e–h pairs from hot electrons is expected. However, such e–h pair multiplication has not been observed in 2D TMD devices. Here, we report the highly efficient multiplication of interlayer e–h pairs in 2D semiconductor heterostructure photocells. Electronic transport measurements of the interlayer I–VSD characteristics indicate that layer-indirect e–h pairs are generated by hot-electron impact excitation at temperatures near T = 300 K. By exploiting this highly efficient interlayer e–h pair multiplication process, we demonstrate near-infrared optoelectronic devices that exhibit 350% enhancement of the optoelectronic responsivity at microwatt power levels. Our findings, which demonstrate efficient carrier multiplication in TMD-based optoelectronic devices, make 2D semiconductor heterostructures viable for a new class of ultra-efficient photodetectors based on layer-indirect e–h excitations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Device geometry, band-structure, photoluminescence and current–voltage characteristics of the 2D semiconductor heterostructure device.
Figure 2: Gate voltage dependence of the interlayer current characteristics in the 2D TMD heterostructure device.
Figure 3: Temperature dependence of the interlayer I–VSD characteristics.
Figure 4: Gate voltage, source–drain voltage and temperature dependence of the interlayer current in the 2D semiconductor heterostructure device.
Figure 5: Interlayer photocurrent characteristics and multiplication enhancement in the 2D heterojunction photocell.


  1. 1

    Dirac, P. A. M. The Principles of Quantum Mechanics (Oxford University Press, 1930).

    Google Scholar 

  2. 2

    Schaller, R. D. & Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 1866011 (2004).

    Article  Google Scholar 

  3. 3

    Ellingson, R. J. et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Gachet, D., Avidan, A., Pinkas, I. & Oron, D. An upper bound to carrier multiplication efficiency in type II colloidal quantum dots. Nano Lett. 10, 164–170 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Cirloganu, M. C. et al. Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nat. Commun. 5, 4148 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Ueda, A., Matsuda, K., Tayagaki, T. & Kanemitsu, Y. Carrier multiplication in carbon nanotubes studied by femtosecond pump–probe spectroscopy. Appl. Phys. Lett. 92, 2331051 (2008).

    Google Scholar 

  8. 8

    Gabor, N. M., Bosnick, Z. K., Park, J. & McEuen, P. L. Extremely efficient multiple electron–hole pair generation in carbon nanotube photodiodes. Science 325, 1367–1371 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Wang, S., Khafizov, M., Tu, X., Zheng, M. & Krauss, T. D. Multiple exciton generation in single-walled carbon nanotubes. Nano Lett. 10, 2381–2386 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Plotzing, T. et al. Experimental verification of carrier multiplication in graphene. Nano Lett. 14, 5371–5375 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Wendler, F., Knorr, A. & Malic, E. Carrier multiplication in graphene under Landau quantization. Nat. Commun. 5, 3703 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Wu, S. et al. Multiple hot-carrier collection in photo-excited graphene Moiré superlattices. Sci. Adv. 2, e1600002 (2016).

    Article  Google Scholar 

  14. 14

    Wu, F., Qu, F. & MacDonald, A. H. Exciton band structure of monolayer MoS2 . Phys. Rev. B 91, 0753101 (2015).

    Google Scholar 

  15. 15

    Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 0768021 (2014).

    Article  Google Scholar 

  16. 16

    Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films. JETP Lett. 29, 658–660 (1979).

    Google Scholar 

  17. 17

    Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotech. 9, 682–686 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Rigosi, A. F., Hill, H. M., Li, Y., Chernikov, A. & Heinz, T. F. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2 . Nano Lett. 15, 5033–5038 (2015).

    CAS  Article  Google Scholar 

  21. 21

    Calman, E. V. et al. Control of excitons in multi-layer van der Waals heterostructures. Appl. Phys. Lett. 108, 1019011 (2016).

    Article  Google Scholar 

  22. 22

    Furchi, M. M., Pospischil, A. A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Nourbakhsh, A., Zubair, A., Dresselhaus, M. & Palacios, T. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 16, 1359–1366 (2016).

    CAS  Article  Google Scholar 

  24. 24

    Sze, M. & Ng, K. K. Physics of Semiconductor Devices (Wiley-Interscience, 1963).

    Google Scholar 

  25. 25

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1960).

    Article  Google Scholar 

  26. 26

    Movva, H. C. P. et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 9, 10402–10410 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Lee, C. L. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotech. 9, 676–681 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    CAS  Article  Google Scholar 

  29. 29

    High, A. A., Novitskaya, E. E., Butov, L. V., Hanson, M. & Gossard, A. C. Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229–231 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Jones, A. M. et al. Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2 . Nat. Phys. 10, 130–134 (2014).

    CAS  Article  Google Scholar 

  31. 31

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  32. 32

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Article  Google Scholar 

  33. 33

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  34. 34

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  35. 35

    Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    CAS  Article  Google Scholar 

  36. 36

    Wang, Y. & Perdew, J. P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 44, 13298–13307 (1991).

    CAS  Article  Google Scholar 

  37. 37

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  38. 38

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787 (2006).

    CAS  Article  Google Scholar 

Download references


This work was made possible by support from SHINES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. SC0012670. N.M.G. and F.B. acknowledge support from the Air Force Office of Scientific Research, Biosystems Directorate award no. FA9550-16-1-0216. N.M.G. acknowledges a Cottrell Scholar Award and support from the National Science Foundation Division of Materials Research CAREER award no. 1651247. M.G., S.S. and R.K.L. acknowledge support from SHINES. Nanofabrication and Raman characterization was performed at the Center for Nanoscale Science and Engineering (CNSE) at the University of California Riverside. DFT calculations were supported by the SHINES centre. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant no. ACI-1053575. V.A. acknowledges support from the National Science Foundation Division of Materials Research under award no. 1506707.

Author information




N.M.G., F.B. and M.G. conceived and designed the experiment. F.B. fabricated the heterostructure devices, and conducted Raman, photoluminescence and photocurrent characterization. M.G. and F.B. performed transport and photocurrent measurements and, in cooperation with V.A., conducted data analysis. N.M.G., V.A. and F.B. developed the interlayer transport model. S.S. and R.K.L. conducted DFT band-structure calculations. All authors discussed the results, analysed data and wrote the manuscript.

Corresponding author

Correspondence to Nathaniel M. Gabor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2665 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barati, F., Grossnickle, M., Su, S. et al. Hot carrier-enhanced interlayer electron–hole pair multiplication in 2D semiconductor heterostructure photocells. Nature Nanotech 12, 1134–1139 (2017).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research