Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A synthetic intrabody-based selective and generic inhibitor of GPCR endocytosis

Subjects

Abstract

Beta-arrestins (βarrs) critically mediate desensitization, endocytosis and signalling of G protein-coupled receptors (GPCRs), and they scaffold a large number of interaction partners. However, allosteric modulation of their scaffolding abilities and direct targeting of their interaction interfaces to modulate GPCR functions selectively have not been fully explored yet. Here we identified a series of synthetic antibody fragments (Fabs) against different conformations of βarrs from phage display libraries. Several of these Fabs allosterically and selectively modulated the interaction of βarrs with clathrin and ERK MAP kinase. Interestingly, one of these Fabs selectively disrupted βarr–clathrin interaction, and when expressed as an intrabody, it robustly inhibited agonist-induced endocytosis of a broad set of GPCRs without affecting ERK MAP kinase activation. Our data therefore demonstrate the feasibility of selectively targeting βarr interactions using intrabodies and provide a novel framework for fine-tuning GPCR functions with potential therapeutic implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allosteric modulation of βarr1–ERK2 interactions by Fab30.
Figure 2: Selective modulation of βarr–clathrin/ERK2 interactions by βarr-targeting synthetic antibody fragments.
Figure 3: Characterization of the βarr2–ScFv5 interaction and functional validation of the ScFv5 intrabody.
Figure 4: Selective inhibition of V2R endocytosis by the ScFv5 intrabody.
Figure 5: Generality of ScFv5 as an inhibitor of GPCR endocytosis.

Similar content being viewed by others

References

  1. Pierce, K. L. & Lefkowitz, R. J. Classical and new roles of β-arrestins in the regulation of G-protein-coupled receptors. Nat. Rev. Neurosci. 2, 727–733 (2001).

    Article  CAS  Google Scholar 

  2. DeFea, K. A. Beta-arrestins as regulators of signal termination and transduction: how do they determine what to scaffold? Cell Signal. 23, 621–629 (2011).

    Article  CAS  Google Scholar 

  3. DeWire, S. M., Ahn, S., Lefkowitz, R. J. & Shenoy, S. K. β-arrestins and cell signaling. Annu. Rev. Physiol. 69, 483–510 (2007).

    Article  CAS  Google Scholar 

  4. Goodman, O. B. Jr et al. β-arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature 383, 447–450 (1996).

    Article  CAS  Google Scholar 

  5. Kang, D. S., Tian, X. & Benovic, J. L. Role of β-arrestins and arrestin domain-containing proteins in G protein-coupled receptor trafficking. Curr. Opin. Cell Biol. 27, 63–71 (2014).

    Article  Google Scholar 

  6. McDonald, P. H. et al. β-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290, 1574–1577 (2000).

    Article  CAS  Google Scholar 

  7. Coffa, S. et al. The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation. PLoS ONE 6, e28723 (2011).

    Article  CAS  Google Scholar 

  8. Ahn, S., Nelson, C. D., Garrison, T. R., Miller, W. E. & Lefkowitz, R. J. Desensitization, internalization, and signaling functions of β-arrestins demonstrated by RNA interference. Proc. Natl Acad. Sci. USA 100, 1740–1744 (2003).

    Article  CAS  Google Scholar 

  9. Kohout, T. A., Lin, F. S., Perry, S. J., Conner, D. A. & Lefkowitz, R. J. β-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc. Natl Acad. Sci. USA 98, 1601–1606 (2001).

    CAS  Google Scholar 

  10. Gurevich, V. V. & Gurevich, E. V. Structural determinants of arrestin functions. Prog. Mol. Biol. Transl. Sci. 118, 57–92 (2013).

    Article  CAS  Google Scholar 

  11. Gurevich, V. V. & Gurevich, E. V. Arrestins: critical players in trafficking of many GPCRs. Prog. Mol. Biol. Transl. Sci. 132, 1–14 (2015).

    Article  CAS  Google Scholar 

  12. Wang, Y. et al. Association of β-arrestin and TRAF6 negatively regulates toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol. 7, 139–147 (2006).

    Article  CAS  Google Scholar 

  13. Milano, S. K., Kim, Y. M., Stefano, F. P., Benovic, J. L. & Brenner, C. Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. J. Biol. Chem. 281, 9812–9823 (2006).

    Article  CAS  Google Scholar 

  14. Zhan, X., Perez, A., Gimenez, L. E., Vishnivetskiy, S. A. & Gurevich, V. V. Arrestin-3 binds the MAP kinase JNK3α2 via multiple sites on both domains. Cell Signal. 26, 766–776 (2014).

    Article  CAS  Google Scholar 

  15. Miller, W. E. et al. β-Arrestin1 interacts with the catalytic domain of the tyrosine kinase c-Src. Role of β-arrestin1-dependent targeting of c-Src in receptor endocytosis. J. Biol. Chem. 275, 11312–11319 (2000).

    Article  CAS  Google Scholar 

  16. Song, X., Gurevich, E. V. & Gurevich, V. V. Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of interaction sites. J. Neurochem. 103, 1053–1062 (2007).

    Article  CAS  Google Scholar 

  17. Song, X., Coffa, S., Fu, H. & Gurevich, V. V. How does arrestin assemble MAPKs into a signaling complex? J. Biol. Chem. 284, 685–695 (2009).

    Article  CAS  Google Scholar 

  18. Zhan, X . et al. Peptide mini-scaffold facilitates JNK3 activation in cells. Sci. Rep. 6, 21025 (2016).

    Article  CAS  Google Scholar 

  19. Shukla, A. K. et al. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497, 137–141 (2013).

    Article  CAS  Google Scholar 

  20. Xiao, K., Shenoy, S. K., Nobles, K. & Lefkowitz, R. J. Activation-dependent conformational changes in β-arrestin 2. J. Biol. Chem. 279, 55744–55753 (2004).

    Article  CAS  Google Scholar 

  21. Nobles, K. N., Guan, Z., Xiao, K., Oas, T. G. & Lefkowitz, R. J. The active conformation of β-arrestin1: direct evidence for the phosphate sensor in the N domain and conformational differences in the active states of β-arrestins1 and -2. J. Biol. Chem. 282, 21370–21381 (2007).

    Article  CAS  Google Scholar 

  22. Kumari, P . et al. Functional competence of a partially engaged GPCR–β-arrestin complex. Nat. Commun. 7, 13416 (2016).

    Article  CAS  Google Scholar 

  23. Zhan, X., Gimenez, L. E., Gurevich, V. V. & Spiller, B. W. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. J. Mol. Biol. 406, 467–478 (2011).

    Article  CAS  Google Scholar 

  24. Hirsch, J. A., Schubert, C., Gurevich, V. V. & Sigler, P. B. A model for arrestin's regulation: the 2.8 Å crystal structure of visual arrestin. Cell 97, 257–269 (1999).

    Article  CAS  Google Scholar 

  25. Srivastava, A., Gupta, B., Gupta, C. & Shukla, A. K. Emerging functional divergence of β-arrestin isoforms in GPCR function. Trends. Endocrinol. Metab. 26, 628–642 (2015).

    Article  CAS  Google Scholar 

  26. Miller, K. R . et al. T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment. PLoS ONE 7, e43746 (2012).

    Article  CAS  Google Scholar 

  27. Paduch, M. et al. Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. Methods 60, 3–14 (2013).

    Article  CAS  Google Scholar 

  28. Zhong, N. et al. Optimizing production of antigens and Fabs in the context of generating recombinant antibodies to human proteins. PLoS ONE 10, e0139695 (2015).

    Article  Google Scholar 

  29. Krupnick, J. G., Goodman, O. B. Jr, Keen, J. H. & Benovic, J. L. Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxyl terminus. J. Biol. Chem. 272, 15011–15016 (1997).

    Article  CAS  Google Scholar 

  30. Oakley, R. H., Laporte, S. A., Holt, J. A., Caron, M. G. & Barak, L. S. Differential affinities of visual arrestin, βarrestin1, and βarrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275, 17201–17210 (2000).

    Article  CAS  Google Scholar 

  31. Ren, X. R. et al. Different G protein-coupled receptor kinases govern G protein and β-arrestin-mediated signaling of V2 vasopressin receptor. Proc. Natl Acad. Sci. USA 102, 1448–1453 (2005).

    Article  CAS  Google Scholar 

  32. Luo, J., Busillo, J. M. & Benovic, J. L. M3 muscarinic acetylcholine receptor-mediated signaling is regulated by distinct mechanisms. Mol. Pharmacol. 74, 338–347 (2008).

    Article  CAS  Google Scholar 

  33. Lai, X. et al. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms. J. Neurochem. 137, 200–215 (2016).

    Article  CAS  Google Scholar 

  34. Daaka, Y. et al. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J. Biol. Chem. 273, 685–688 (1998).

    Article  CAS  Google Scholar 

  35. Wei, H., Ahn, S., Barnes, W. G. & Lefkowitz, R. J. Stable interaction between β-arrestin 2 and angiotensin type 1A receptor is required for β-arrestin 2-mediated activation of extracellular signal-regulated kinases 1 and 2. J. Biol. Chem. 279, 48255–48261 (2004).

    Article  CAS  Google Scholar 

  36. Shenoy, S. K. et al. Ubiquitination of β-arrestin links seven-transmembrane receptor endocytosis and ERK activation. J. Biol. Chem. 282, 29549–29562 (2007).

    Article  CAS  Google Scholar 

  37. Kramer, H. K. & Simon, E. J. μ and δ-opioid receptor agonists induce mitogen-activated protein kinase (MAPK) activation in the absence of receptor internalization. Neuropharmacology 39, 1707–1719 (2000).

    Article  CAS  Google Scholar 

  38. Whistler, J. L. & von Zastrow, M. Dissociation of functional roles of dynamin in receptor-mediated endocytosis and mitogenic signal transduction. J. Biol. Chem. 274, 24575–24578 (1999).

    Article  CAS  Google Scholar 

  39. DeGraff, J. L., Gagnon, A. W., Benovic, J. L. & Orsini, M. J. Role of arrestins in endocytosis and signaling of α2-adrenergic receptor subtypes. J. Biol. Chem. 274, 11253–11259 (1999).

    Article  CAS  Google Scholar 

  40. Blaukat, A. et al. Activation of mitogen-activated protein kinase by the bradykinin B2 receptor is independent of receptor phosphorylation and phosphorylation-triggered internalization. FEBS Lett. 451, 337–341 (1999).

    Article  CAS  Google Scholar 

  41. van Koppen, C. J. & Jakobs, K. H. Arrestin-independent internalization of G protein-coupled receptors. Mol. Pharmacol. 66, 365–367 (2004).

    Article  CAS  Google Scholar 

  42. Pals-Rylaarsdam, R. et al. Internalization of the M2 muscarinic acetylcholine receptor. Arrestin-independent and -dependent pathways. J. Biol. Chem. 272, 23682–23689 (1997).

    Article  CAS  Google Scholar 

  43. Bowen-Pidgeon, D., Innamorati, G., Sadeghi, H. M. & Birnbaumer, M. Arrestin effects on internalization of vasopressin receptors. Mol. Pharmacol. 59, 1395–1401 (2001).

    Article  CAS  Google Scholar 

  44. Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996).

    Article  CAS  Google Scholar 

  45. Kim, Y. M. & Benovic, J. L. Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J. Biol. Chem. 277, 30760–30768 (2002).

    Article  CAS  Google Scholar 

  46. Breitman, M. et al. Silent scaffolds: inhibition of c-Jun N-terminal kinase 3 activity in cell by dominant-negative arrestin-3 mutant. J. Biol. Chem. 287, 19653–19664 (2012).

    Article  CAS  Google Scholar 

  47. Coffa, S., Breitman, M., Spiller, B. W. & Gurevich, V. V. A single mutation in arrestin-2 prevents ERK1/2 activation by reducing c-Raf1 binding. Biochemistry 50, 6951–6958 (2011).

    Article  CAS  Google Scholar 

  48. Qian, H., Pipolo, L. & Thomas, W. G. Association of beta-arrestin 1 with the type 1A angiotensin II receptor involves phosphorylation of the receptor carboxyl terminus and correlates with receptor internalization. Mol. Endocrinol. 15, 1706–1719 (2001).

    CAS  Google Scholar 

  49. Malik, R. & Marchese, A. Arrestin-2 interacts with the endosomal sorting complex required for transport machinery to modulate endosomal sorting of CXCR4. Mol. Biol. Cell 21, 2529–2541 (2010).

    Article  CAS  Google Scholar 

  50. Alekhina, O. & Marchese, A. β-Arrestin1 and signal-transducing adaptor molecule 1 (STAM1) cooperate to promote focal adhesion kinase autophosphorylation and chemotaxis via the chemokine receptor CXCR4. J. Biol. Chem. 291, 26083–26097 (2016).

    Article  CAS  Google Scholar 

  51. Staus, D. P. et al. Regulation of β2-adrenergic receptor function by conformationally selective single-domain intrabodies. Mol. Pharmacol. 85, 472–481 (2014).

    Article  Google Scholar 

  52. Shukla, A. K. Biasing GPCR signaling from inside. Sci. Signal. 7, pe3–pe3 (2014).

    Article  Google Scholar 

  53. Carr, R. III et al. Development and characterization of pepducins as Gs-biased allosteric agonists. J. Biol. Chem. 289, 35668–35684 (2014).

    Article  CAS  Google Scholar 

  54. Quoyer, J. et al. Pepducin targeting the CXC chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein. Proc. Natl Acad. Sci. USA 110, E5088–E5097 (2013).

    Article  CAS  Google Scholar 

  55. Beautrait, A. et al. A new inhibitor of the β-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nat. Commun. 8, 15054 (2017).

    Article  CAS  Google Scholar 

  56. Eichel, K., Jullié, D. & von Zastrow, M. β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat. Cell Biol. 18, 303–310 (2016).

    Article  CAS  Google Scholar 

  57. Ranjan, R., Gupta, P. & Shukla, A. K. GPCR signaling: β-arrestins kiss and remember. Curr. Biol. 26, R285–R288 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research program in the Department of Biological Science and Bioengineering is supported by the Indian Institute of Technology Kanpur (IITK/BSBE/2014011), Department of Biotechnology (DBT) (BT/08/IYBA/2014/03), Council of Scientific and Industrial Research (37(1637)/14/EMR-II) and the Wellcome Trust DBT India Alliance (IA/I/14/1/501285). A.K. Shukla is an Intermediate Fellow of the Wellcome Trust/DBT India Alliance (IA/I/14/1/501285). We thank L. Traub, M. Scott, T. Pucadyil, R. Shaw and R. Davis for the plasmids that encode the clathrin terminal domain, βarr2–mCherry, GST-β2 adaptin, hTfr1 (Addgene no. 69610) and JNK3 (Addgene no. 15748), respectively. We also acknowledge the help from C. Gupta and P. Gupta in the early stages of this work, and S. Pandey for help in the protein purification.

Author information

Authors and Affiliations

Authors

Contributions

E.G. designed, optimized and performed the endocytosis and ERK activation experiments with the ScFv5 intrabody and the cross-linking experiment with ScFv5, and assisted in the ERK assays. A.S. performed the ELISA based assessment of clathrin and ERK interaction with βarr, and assisted in the endocytosis and ERK assays. M.B. performed the confocal microscopy using the ScFv5-YFP intrabody and assisted in the subcloning and endocytosis experiments. P.K. carried out the ELISA based selectivity test for βarr2 Fabs, and the endocytosis and ERK assays for M2R and β2V2R together with M.B. H.D. carried out the selectivity assays for Fabs by coIP together with A.S., the ELISA-based selectivity assays for Fab5 and ScFv5 and the mapping experiment for ScFv5. R.R. converted the Fabs into intrabodies for expression, and assisted in subcloning the various constructs and endocytosis experiments. K.N. performed the initial phase of intrabody expression, functional validation and their effect on receptor endocytosis and ERK activation. S.D. and P.N.Y. assisted in the βarr knockdown. S.K., A.K. and S.S.S. provided the phage display libraries. A.K.S. carried out the phage display screening, wrote the manuscript and supervised the overall project design and execution. All the authors approved the final draft of the manuscript.

Corresponding author

Correspondence to Arun K. Shukla.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, E., Srivastava, A., Baidya, M. et al. A synthetic intrabody-based selective and generic inhibitor of GPCR endocytosis. Nature Nanotech 12, 1190–1198 (2017). https://doi.org/10.1038/nnano.2017.188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing