Letter | Published:

Nanoscopic control and quantification of enantioselective optical forces

Nature Nanotechnology volume 12, pages 10551059 (2017) | Download Citation

Abstract

Circularly polarized light (CPL) exerts a force of different magnitude on left- and right-handed enantiomers, an effect that could be exploited for chiral resolution of chemical compounds1,2,3,4,5 as well as controlled assembly of chiral nanostructures6,7. However, enantioselective optical forces are challenging to control and quantify because their magnitude is extremely small (sub-piconewton) and varies in space with sub-micrometre resolution2. Here, we report a technique to both strengthen and visualize these forces, using a chiral atomic force microscope probe coupled to a plasmonic optical tweezer8,9,10,11,12,13. Illumination of the plasmonic tweezer with CPL exerts a force on the microscope tip that depends on the handedness of the light and the tip. In particular, for a left-handed chiral tip, transverse forces are attractive with left-CPL and repulsive with right-CPL. Additionally, total force differences between opposite-handed specimens exceed 10 pN. The microscope tip can map chiral forces with 2 nm lateral resolution, revealing a distinct spatial distribution of forces for each handedness.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Mechanical separation of chiral dipoles by chiral light. New J. Phys. 15, 123037 (2013).

  2. 2.

    , & Lateral chirality-sorting optical forces. Proc. Natl Acad. Sci. USA. 112, 13190–13194 (2015).

  3. 3.

    & Optofluidic sorting of material chirality by chiral light. Nat. Commun. 5, 3577 (2014).

  4. 4.

    & Lateral optical force on chiral particles near a surface. Nat. Commun. 5, 4307 (2014).

  5. 5.

    , & Discriminatory optical force for chiral molecules. New J. Phys. 16, 013020 (2014).

  6. 6.

    et al. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. Nat. Chem. 1, 729–732 (2009).

  7. 7.

    et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 14, 66–72 (2015).

  8. 8.

    et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotech. 9, 295–299 (2014).

  9. 9.

    , , & Nanometric optical tweezers based on nanostructured substrates. Nat. Photon. 2, 365–370 (2008).

  10. 10.

    et al. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat. Nanotech. 11, 53–59 (2016).

  11. 11.

    , , , & Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 100, 186804 (2008).

  12. 12.

    , , & Understanding and controlling plasmon-induced convection. Nat. Commun. 5, 3173 (2014).

  13. 13.

    & Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping. J. Phys. Chem. Lett. 5, 2957–2967 (2014).

  14. 14.

    et al. Circular polarization in star-formation regions: implications for biomolecular homochirality. Science 281, 672–674 (1998).

  15. 15.

    & Enantiomeric excesses in meteoritic amino acids. Science 275, 951–955 (1997).

  16. 16.

    et al. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014).

  17. 17.

    & Transverse chiral optical forces by chiral surface plasmon polaritons. ACS Photon. 2, 1780–1788 (2015).

  18. 18.

    & Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333–336 (2011).

  19. 19.

    , & Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photon. 8, 307–312 (2014).

  20. 20.

    , & Measured long-range repulsive Casimir–Lifshitz forces. Nature 457, 170–173 (2009).

  21. 21.

    , & Halving the Casimir force with conductive oxides: experimental details. Phys. Rev. A 82, 062512 (2010).

  22. 22.

    , & Image force microscopy of molecular resonance: a microscope principle. Appl. Phys. Lett. 97, 073121 (2010).

  23. 23.

    , , , & Imaging nanoscale electromagnetic near-field distributions using optical forces. Sci. Rep. 5, 10610 (2015).

  24. 24.

    et al. Nanoscale chemical imaging by photoinduced force microscopy. Sci. Adv. 2, e1501571 (2016).

  25. 25.

    , , & Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers. Opt. Express 24, 20593–20603 (2016).

  26. 26.

    , , & Experimental realization of a polarization-independent ultraviolet/visible coaxial plasmonic metamaterial. Nano Lett. 14, 6356–6360 (2014).

  27. 27.

    , & Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers. ACS Photon. 3, 304–309 (2016).

  28. 28.

    et al. Beaming light from a subwavelength aperture. Science 297, 820–822 (2002).

  29. 29.

    , , , & Three-dimensional chiral plasmonic oligomers. Nano Lett. 12, 2542–2547 (2012).

  30. 30.

    Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows. J. Opt. 15, 044004 (2013).

Download references

Acknowledgements

The authors thank A. Polman from the Stichting voor Fundamenteel Onderzoek der Materie (FOM) Institute AMOLF for discussions. The authors acknowledge funding from the Gordon and Betty Moore Foundation, a National Science Foundation CAREER Award (DMR- 1151231), a Presidential Early Career Award administered through the Air Force Office of Scientific Research (FA9550-15-1-0006) and the European Research Council. This work is part of the research programme of FOM, which is part of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek.

Author information

Affiliations

  1. Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA

    • Yang Zhao
    • , Amr A. E. Saleh
    • , Brian Baum
    • , Olivia A. Reyes-Becerra
    •  & Jennifer A. Dionne
  2. Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University, Giza, Egypt

    • Amr A. E. Saleh
  3. FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands

    • Marie Anne van de Haar
  4. Department of Applied Physics, Stanford University, Stanford, California 94305, USA

    • Justin A. Briggs
    •  & Alice Lay

Authors

  1. Search for Yang Zhao in:

  2. Search for Amr A. E. Saleh in:

  3. Search for Marie Anne van de Haar in:

  4. Search for Brian Baum in:

  5. Search for Justin A. Briggs in:

  6. Search for Alice Lay in:

  7. Search for Olivia A. Reyes-Becerra in:

  8. Search for Jennifer A. Dionne in:

Contributions

Y.Z. and J.A.D. conceived and designed the experiments. Y.Z., A.A.E.S. and M.A.v.d.H. performed the experiments. A.L. and O.A.R.-B. assisted with the experiments. Y.Z. and B.B. conducted the theory and numerical simulations. Y.Z., J.A.B. and J.A.D. co-wrote the paper. J.A.D. supervised the entire study. All authors contributed to the analysis of the data and revision of the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Yang Zhao or Jennifer A. Dionne.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2017.180

Further reading

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research