Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscopic control and quantification of enantioselective optical forces

Abstract

Circularly polarized light (CPL) exerts a force of different magnitude on left- and right-handed enantiomers, an effect that could be exploited for chiral resolution of chemical compounds1,2,3,4,5 as well as controlled assembly of chiral nanostructures6,7. However, enantioselective optical forces are challenging to control and quantify because their magnitude is extremely small (sub-piconewton) and varies in space with sub-micrometre resolution2. Here, we report a technique to both strengthen and visualize these forces, using a chiral atomic force microscope probe coupled to a plasmonic optical tweezer8,9,10,11,12,13. Illumination of the plasmonic tweezer with CPL exerts a force on the microscope tip that depends on the handedness of the light and the tip. In particular, for a left-handed chiral tip, transverse forces are attractive with left-CPL and repulsive with right-CPL. Additionally, total force differences between opposite-handed specimens exceed 10 pN. The microscope tip can map chiral forces with 2 nm lateral resolution, revealing a distinct spatial distribution of forces for each handedness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic, microscopic images, and simulations.
Figure 2: Spectroscopically measured optical forces with an achiral tip.
Figure 3: Enantioselective optical forces with achiral and chiral tips.
Figure 4: Enantioselective optical force map.

Similar content being viewed by others

References

  1. Canaguier-Durand, A., Hutchison, J. A., Genet, C. & Ebbesen, T. W. Mechanical separation of chiral dipoles by chiral light. New J. Phys. 15, 123037 (2013).

    Article  Google Scholar 

  2. Hayat, A., Mueller, J. P. B. & Capasso, F. Lateral chirality-sorting optical forces. Proc. Natl Acad. Sci. USA. 112, 13190–13194 (2015).

    Article  CAS  Google Scholar 

  3. Tkachenko, G. & Brasselet, E. Optofluidic sorting of material chirality by chiral light. Nat. Commun. 5, 3577 (2014).

    Article  Google Scholar 

  4. Wang, S. B. & Chan, C. T. Lateral optical force on chiral particles near a surface. Nat. Commun. 5, 4307 (2014).

    Article  Google Scholar 

  5. Robert, P. C., Stephen, M. B. & Alison, M. Y. Discriminatory optical force for chiral molecules. New J. Phys. 16, 013020 (2014).

    Article  Google Scholar 

  6. Noorduin, W. L. et al. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. Nat. Chem. 1, 729–732 (2009).

    Article  CAS  Google Scholar 

  7. Yeom, J. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 14, 66–72 (2015).

    Article  CAS  Google Scholar 

  8. Berthelot, J. et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotech. 9, 295–299 (2014).

    Article  CAS  Google Scholar 

  9. Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nat. Photon. 2, 365–370 (2008).

    Article  CAS  Google Scholar 

  10. Ndukaife, J. C. et al. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat. Nanotech. 11, 53–59 (2016).

    Article  CAS  Google Scholar 

  11. Righini, M., Volpe, G., Girard, C., Petrov, D. & Quidant, R. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 100, 186804 (2008).

    Article  Google Scholar 

  12. Roxworthy, B. J., Bhuiya, A. M., Vanka, S. P. & Toussaint, K. C. Understanding and controlling plasmon-induced convection. Nat. Commun. 5, 3173 (2014).

    Article  Google Scholar 

  13. Shoji, T. & Tsuboi, Y. Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping. J. Phys. Chem. Lett. 5, 2957–2967 (2014).

    Article  CAS  Google Scholar 

  14. Bailey, J. et al. Circular polarization in star-formation regions: implications for biomolecular homochirality. Science 281, 672–674 (1998).

    Article  Google Scholar 

  15. Cronin, J. R. & Pizzarello, S. Enantiomeric excesses in meteoritic amino acids. Science 275, 951–955 (1997).

    Article  CAS  Google Scholar 

  16. Kuzyk, A. et al. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014).

    Article  CAS  Google Scholar 

  17. Alizadeh, M. H. & Reinhard, B. M. Transverse chiral optical forces by chiral surface plasmon polaritons. ACS Photon. 2, 1780–1788 (2015).

    Article  CAS  Google Scholar 

  18. Tang, Y. & Cohen, A. E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333–336 (2011).

    Article  CAS  Google Scholar 

  19. Lu, F., Jin, M. & Belkin, M. A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photon. 8, 307–312 (2014).

    Article  CAS  Google Scholar 

  20. Munday, J. N., Capasso, F. & Parsegian, V. A. Measured long-range repulsive Casimir–Lifshitz forces. Nature 457, 170–173 (2009).

    Article  CAS  Google Scholar 

  21. de Man, S., Heeck, K. & Iannuzzi, D. Halving the Casimir force with conductive oxides: experimental details. Phys. Rev. A 82, 062512 (2010).

    Article  Google Scholar 

  22. Rajapakse, I., Uenal, K. & Wickramasinghe, H. K. Image force microscopy of molecular resonance: a microscope principle. Appl. Phys. Lett. 97, 073121 (2010).

    Article  Google Scholar 

  23. Huang, F., Tamma, V. A., Mardy, Z., Burdett, J. & Wickramasinghe, H. K. Imaging nanoscale electromagnetic near-field distributions using optical forces. Sci. Rep. 5, 10610 (2015).

    Article  Google Scholar 

  24. Nowak, D. et al. Nanoscale chemical imaging by photoinduced force microscopy. Sci. Adv. 2, e1501571 (2016).

    Article  Google Scholar 

  25. Saleh, A. A. E., Sheikhoelislami, S., Gastelum, S. & Dionne, J. A. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers. Opt. Express 24, 20593–20603 (2016).

    Article  CAS  Google Scholar 

  26. Van de Haar, M. A., Maas, R., Schokker, H. & Polman, A. Experimental realization of a polarization-independent ultraviolet/visible coaxial plasmonic metamaterial. Nano Lett. 14, 6356–6360 (2014).

    Article  CAS  Google Scholar 

  27. Zhao, Y., Saleh, A. A. E. & Dionne, J. A. Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers. ACS Photon. 3, 304–309 (2016).

    Article  CAS  Google Scholar 

  28. Lezec, H. J. et al. Beaming light from a subwavelength aperture. Science 297, 820–822 (2002).

    Article  CAS  Google Scholar 

  29. Hentschel, M., Schäferling, M., Weiss, T., Liu, N. & Giessen, H. Three-dimensional chiral plasmonic oligomers. Nano Lett. 12, 2542–2547 (2012).

    Article  CAS  Google Scholar 

  30. Bekshaev, A. Y. Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows. J. Opt. 15, 044004 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Polman from the Stichting voor Fundamenteel Onderzoek der Materie (FOM) Institute AMOLF for discussions. The authors acknowledge funding from the Gordon and Betty Moore Foundation, a National Science Foundation CAREER Award (DMR- 1151231), a Presidential Early Career Award administered through the Air Force Office of Scientific Research (FA9550-15-1-0006) and the European Research Council. This work is part of the research programme of FOM, which is part of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and J.A.D. conceived and designed the experiments. Y.Z., A.A.E.S. and M.A.v.d.H. performed the experiments. A.L. and O.A.R.-B. assisted with the experiments. Y.Z. and B.B. conducted the theory and numerical simulations. Y.Z., J.A.B. and J.A.D. co-wrote the paper. J.A.D. supervised the entire study. All authors contributed to the analysis of the data and revision of the paper.

Corresponding authors

Correspondence to Yang Zhao or Jennifer A. Dionne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Saleh, A., van de Haar, M. et al. Nanoscopic control and quantification of enantioselective optical forces. Nature Nanotech 12, 1055–1059 (2017). https://doi.org/10.1038/nnano.2017.180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing