Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry

Abstract

Ion sources for molecular mass spectrometry are usually driven by direct current power supplies with no user control over the total charges generated. Here, we show that the output of triboelectric nanogenerators (TENGs) can quantitatively control the total ionization charges in mass spectrometry. The high output voltage of TENGs can generate single- or alternating-polarity ion pulses, and is ideal for inducing nanoelectrospray ionization (nanoESI) and plasma discharge ionization. For a given nanoESI emitter, accurately controlled ion pulses ranging from 1.0 to 5.5 nC were delivered with an onset charge of 1.0 nC. Spray pulses can be generated at a high frequency of 17 Hz (60 ms in period) and the pulse duration is adjustable on-demand between 60 ms and 5.5 s. Highly sensitive (0.6 zeptomole) mass spectrometry analysis using minimal sample (18 pl per pulse) was achieved with a 10 pg ml−1 cocaine sample. We also show that native protein conformation is conserved in TENG-ESI, and that patterned ion deposition on conductive and insulating surfaces is possible.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ionization by TENGs.
Figure 2: TENG accurately controls nanoelectrospray ionization.
Figure 3: Enhanced sensitivity under transient TENG high voltage.
Figure 4: Dual-polarity ionization and preservation of native biomolecule conformation.
Figure 5: Ion deposition on various types of surface using the SF-TENG.

References

  1. 1

    Maher, S., Jjunju, F. P. M. & Taylor, S. Colloquium: 100 years of mass spectrometry: perspectives and future trends. Rev. Mod. Phys. 87, 113–135 (2015).

    CAS  Article  Google Scholar 

  2. 2

    Louris, J. N. et al. Instrumentation, applications, and energy deposition in quadrupole ion-trap tandem mass-spectrometry. Anal. Chem. 59, 1677–1685 (1987).

    CAS  Article  Google Scholar 

  3. 3

    Bohrer, B. C., Mererbloom, S. I., Koeniger, S. L., Hilderbrand, A. E. & Clemmer, D. E. Biomolecule analysis by ion mobility spectrometry. Annu. Rev. Anal. Chem. 1, 293–327 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Ruotolo, B. T., Benesch, J. L. P., Sandercock, A. M., Hyung, S. J. & Robinson, C. V. Ion mobility-mass spectrometry analysis of large protein complexes. Nat. Protoc. 3, 1139–1152 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Gross, M. L. & Rempel, D. L. Fourier transform mass spectrometry. Science 226, 261–268 (1984).

    CAS  Article  Google Scholar 

  6. 6

    Hu, Q. Z. et al. The orbitrap: a new mass spectrometer. J. Mass Spectrom. 40, 430–443 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Contino, N. C., Pierson, E. E., Keifer, D. Z. & Jarrold, M. F. Charge detection mass spectrometry with resolved charge states. J. Am. Soc. Mass Spectrom. 24, 101–108 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Webb, I. K. et al. Mobility-resolved ion selection in uniform drift field ion mobility spectrometry/mass spectrometry: dynamic switching in structures for lossless ion manipulations. Anal. Chem. 86, 9632–9637 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Liang, X. R., Han, H. L., Xia, Y. & McLuckey, S. A. A pulsed triple ionization source for sequential ion/ion reactions in an electrodynamic ion trap. J. Am. Soc. Mass Spectrom. 18, 369–376 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Bushey, J. M., Kaplan, D. A., Danell, R. M. & Glish, G. L. Pulsed nano-electrospray ionization: characterization of temporal response and implementation with a flared inlet capillary. Instrum. Sci. Technol. 37, 257–273 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Xu, W., Charipar, N., Kirleis, M. A., Xia, Y. & Ouyang, Z. Study of discontinuous atmospheric pressure interfaces for mass spectrometry instrumentation development. Anal. Chem. 82, 6584–6592 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Schilling, M., Janasek, D. & Franzke, J. Electrospray-ionization driven by dielectric polarization. Anal. Bioanal. Chem. 391, 555–561 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Huang, G. M., Li, G. T. & Cooks, R. G. Induced nanoelectrospray ionization for matrix-tolerant and high-throughput mass spectrometry. Angew. Chem. Int. Ed. 50, 9907–9910 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Li, A., Hollerbach, A., Luo, Q. & Cooks, R. G. On-demand ambient ionization of picoliter samples using charge pulses. Angew. Chem. Int. Ed. 54, 6893–6895 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533–9557 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Wang, Z. L., Chen, J. & Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Tang, W. et al. Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts proliferation and differentiation. ACS Nano 9, 7867–7873 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Niu, S. M., Wang, X. F., Yi, F., Zhou, Y. S. & Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6, 8795 (2015).

    Article  Google Scholar 

  20. 20

    McCarty, L. S. & Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 2188–2207 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Baytekin, H. T. et al. The mosaic of surface charge in contact electrification. Science 333, 308–312 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Wang, S. et al. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A 4, 3728–3734 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Zhu, G., Chen, J., Zhang, T. J., Jing, Q. S. & Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014).

    Article  Google Scholar 

  24. 24

    Chen, J. et al. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 25, 6094–6099 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Zi, Y. et al. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016).

    CAS  Article  Google Scholar 

  26. 26

    Zi, Y. et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Wei, Z. et al. Pulsed direct current electrospray: enabling systematic analysis of small volume sample by boosting sample economy. Anal. Chem. 87, 11242–11248 (2015).

    CAS  Article  Google Scholar 

  28. 28

    Marginean, I., Nemes, P. & Vertes, A. Astable regime in electrosprays. Phys. Rev. E 76, 026320 (2007).

    Article  Google Scholar 

  29. 29

    Whelan, M. et al. Determination of anthelmintic drug residues in milk using ultra high performance liquid chromatography-tandem mass spectrometry with rapid polarity switching. J. Chromatogr. A 1217, 4612–4622 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Nazari, M. & Muddiman, D. C. Polarity switching mass spectrometry imaging of healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Analyst 141, 595–605 (2016).

    CAS  Article  Google Scholar 

  31. 31

    Harris, G. A., Kwasnik, M. & Fernandez, F. M. Direct analysis in real time coupled to multiplexed drift tube ion mobility spectrometry for detecting toxic chemicals. Anal. Chem. 83, 1908–1915 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Allen, S. J., Schwartz, A. M. & Bush, M. F. Effects of polarity on the structures and charge states of native-like proteins and protein complexes in the gas phase. Anal. Chem. 85, 12055–12061 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Wampler, F. M., Blades, A. T. & Kebarle, P. Negative ion electrospray mass spectrometry of nucleotides: ionization from water solution with SF6 discharge suppression. J. Am. Soc. Mass Spectrom. 4, 289–295 (1993).

    CAS  Article  Google Scholar 

  34. 34

    Monge, M. E., Harris, G. A., Dwivedi, P. & Fernandez, F. M. Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem. Rev. 113, 2269–2308 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Verbeck, G., Hoffmann, W. & Walton, B. Soft-landing preparative mass spectrometry. Analyst 137, 4393–4407 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Tyo, E. C. & Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotech. 10, 577–588 (2015).

    CAS  Article  Google Scholar 

  37. 37

    Johnson, G. E., Colby, R., Engelhard, M., Moon, D. & Laskin, J. Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen. Nanoscale 7, 12379–12391 (2015).

    CAS  Article  Google Scholar 

  38. 38

    Ouyang, Z. et al. Preparing protein microarrays by soft-landing of mass-selected ions. Science 301, 1351–1354 (2003).

    CAS  Article  Google Scholar 

  39. 39

    Ju, J., Yamagata, Y. & Higuchi, T. Thin-film fabrication method for organic light-emitting diodes using electrospray deposition. Adv. Mater. 21, 4343–4347 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Bender, F., Wachter, L., Voigt, A. & Rapp, M. Deposition of high quality coatings on saw sensors using electrospray. Proc. IEEE Sensors 1, 115–119 (2003).

    CAS  Google Scholar 

  41. 41

    Li, A. et al. Using ambient ion beams to write nanostructured patterns for surface enhanced raman spectroscopy. Angew. Chem. Int. Ed. 53, 12528–12531 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Science Foundation (NSF) and the NASA Astrobiology Program, under the NSF Center for Chemical Evolution, CHE-1504217. Research was also supported by the US Department of Energy, Office of Basic Energy Sciences (award DE-FG02-07ER46394) and the National Science Foundation (DMR-1505319).

Author information

Affiliations

Authors

Contributions

A.L., Y.Z., F.M.F. and Z.L.W. conceived the idea, discussed the data and prepared the manuscript. A.L. and Y.Z. performed electrical measurements. Y.Z. fabricated the TENGs. A.L. performed mass spectrometry experiments. H.G. provided assistance with the experiments.

Corresponding authors

Correspondence to Zhong Lin Wang or Facundo M. Fernández.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1140 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, A., Zi, Y., Guo, H. et al. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nature Nanotech 12, 481–487 (2017). https://doi.org/10.1038/nnano.2017.17

Download citation

Further reading