Abstract
Building electronic components made of individual molecules is a promising strategy for the miniaturization and integration of electronic devices. However, the practical realization of molecular devices and circuits for signal transmission and processing at room temperature has proven challenging. Here, we present room-temperature intermolecular signal transfer and processing using SnCl2Pc molecules on a Cu(100) surface. The in-plane orientations of the molecules are effectively coupled via intermolecular interaction and serve as the information carrier. In the coupled molecular arrays, the signal can be transferred from one molecule to another in the in-plane direction along predesigned routes and processed to realize logical operations. These phenomena enable the use of molecules displaying intrinsic bistable states as complex molecular devices and circuits with novel functions.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Atomic-scale visualization of chiral charge density wave superlattices and their reversible switching
Nature Communications Open Access 05 April 2022
-
Artificial-intelligence-driven scanning probe microscopy
Communications Physics Open Access 19 March 2020
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).
Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000).
Bumm, L., Arnold, J., Cygan, M. & Dunbar, T. Are single molecular wires conducting? Science 271, 1705–1707 (1996).
Van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).
Schirm, C. et al. A current-driven single-atom memory. Nat. Nanotech. 8, 645–648 (2013).
Sun, L. et al. Single-molecule electronics: from chemical design to functional devices. Chem. Soc. Rev. 43, 7378–7411 (2014).
Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).
Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotech. 8, 399–410 (2013).
Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotech. 2, 687–691 (2007).
Guisinger, N. P., Greene, M. E., Basu, R., Baluch, A. S. & Hersam, M. C. Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett. 4, 55–59 (2004).
Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).
Ramachandran, G. K. et al. A bond-fluctuation mechanism for stochastic switching in wired molecules. Science 300, 1413–1416 (2003).
Zhang, Y. et al. Simultaneous and coordinated rotational switching of all molecular rotors in a network. Nat. Nanotech. 11, 706–712 (2016).
Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).
Loth, S., Baumann, S., Lutz, C. P., Eigler, D. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196–199 (2012).
Kalff, F. E. et al. A kilobyte rewritable atomic memory. Nat. Nanotech. 11, 926–929 (2016).
Ng, M. K. & Yu, L. Synthesis of amphiphilic conjugated diblock oligomers as molecular diodes. Angew. Chem. Int. Ed. 41, 3598–3601 (2002).
Feynman, R. P. There's plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960).
Wang, Y., Kröge, J., Berndt, R. & Hofer, W. A. Pushing and pulling a Sn ion through an adsorbed phthalocyanine molecule. J. Am. Chem. Soc. 131, 3639–3643 (2009).
Liu, J. et al. Positioning and switching phthalocyanine molecules on a Cu(100) surface at room temperature. ACS Nano 8, 12734–12740 (2014).
Liu, L. et al. Switching molecular orientation of individual fullerene at room temperature. Sci. Rep. 3, 3062 (2013).
Kahn, O. & Martinez, C. J. Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44–48 (1998).
Shirota, Y. & Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107, 953–1010 (2007).
Moresco, F. et al. Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: a route to molecular switching. Phys. Rev. Lett. 86, 672–675 (2001).
Kumagai, T. et al. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nat. Chem. 6, 41–46 (2014).
Li, C. et al. Manipulating individual dichlorotin phthalocyanine molecules on Cu(100) surface at room temperature by scanning tunneling microscopy. Mater. Res. Express 1, 045101 (2014).
Nickel, A. et al. Moving nanostructures: pulse-induced positioning of supramolecular assemblies. ACS Nano 7, 191–197 (2013).
Alemani, M. et al. Electric field-induced isomerization of azobenzene by STM. J. Am. Chem. Soc. 128, 14446–14447 (2006).
Chen, F. et al. Chiral recognition of zinc phthalocyanine on Cu(100) surface. Appl. Phys. Lett. 100, 081602 (2012).
Xu, R. et al. Room-temperature tracking of chiral recognition process at the single-molecule level. Nano Res. 8, 3505–3511 (2015).
Fernandez-Torrente, I. et al. Long-range repulsive interaction between molecules on a metal surface induced by charge transfer. Phys. Rev. Lett. 99, 176103 (2007).
Heinrich, A., Lutz, C., Gupta, J. & Eigler, D. Molecule cascades. Science 298, 1381–1387 (2002).
Gimzewski, J. K. et al. Rotation of a single molecule within a supramolecular bearing. Science 281, 531–533 (1998).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).
Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).
Acknowledgements
This work was supported financially by the Natural Science Foundation of China (grants 61474059, U1432129 and 11504158) and the National Key Basic Research Program of China (2013CB934200).
Author information
Authors and Affiliations
Contributions
L.W. conceived and designed the experiment, discussed and analysed data, and wrote the manuscript. C.L. and Z.W. performed sample preparation and STM. C.L., Z.W., Y.L. and X.L. analysed the data. Y.L. performed the DFT calculations and theoretical analyses. All authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1582 kb)
Supplementary information
Supplementary Movie 1 (MOV 236 kb)
Supplementary information
Supplementary Movie 2 (MOV 346 kb)
Supplementary information
Supplementary Movie 3 (MOV 1889 kb)
Supplementary information
Supplementary Movie 4 (MOV 981 kb)
Rights and permissions
About this article
Cite this article
Li, C., Wang, Z., Lu, Y. et al. Conformation-based signal transfer and processing at the single-molecule level. Nature Nanotech 12, 1071–1076 (2017). https://doi.org/10.1038/nnano.2017.179
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2017.179
This article is cited by
-
Atomic-scale visualization of chiral charge density wave superlattices and their reversible switching
Nature Communications (2022)
-
Electric field stimulates production of highly conductive microbial OmcZ nanowires
Nature Chemical Biology (2020)
-
Artificial-intelligence-driven scanning probe microscopy
Communications Physics (2020)