Conformation-based signal transfer and processing at the single-molecule level

Abstract

Building electronic components made of individual molecules is a promising strategy for the miniaturization and integration of electronic devices. However, the practical realization of molecular devices and circuits for signal transmission and processing at room temperature has proven challenging. Here, we present room-temperature intermolecular signal transfer and processing using SnCl2Pc molecules on a Cu(100) surface. The in-plane orientations of the molecules are effectively coupled via intermolecular interaction and serve as the information carrier. In the coupled molecular arrays, the signal can be transferred from one molecule to another in the in-plane direction along predesigned routes and processed to realize logical operations. These phenomena enable the use of molecules displaying intrinsic bistable states as complex molecular devices and circuits with novel functions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The orientation of a molecule was affected by its neighbouring molecules.
Figure 2: Molecular domino effects and information carrier process.
Figure 3: Molecular logic gate consisting of four molecules.
Figure 4: Single-molecule flipping between two states at high frequency due to a special molecular configuration.

References

  1. 1

    Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    CAS  Article  Google Scholar 

  2. 2

    Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Bumm, L., Arnold, J., Cygan, M. & Dunbar, T. Are single molecular wires conducting? Science 271, 1705–1707 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Schirm, C. et al. A current-driven single-atom memory. Nat. Nanotech. 8, 645–648 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Sun, L. et al. Single-molecule electronics: from chemical design to functional devices. Chem. Soc. Rev. 43, 7378–7411 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotech. 8, 399–410 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotech. 2, 687–691 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Guisinger, N. P., Greene, M. E., Basu, R., Baluch, A. S. & Hersam, M. C. Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett. 4, 55–59 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Ramachandran, G. K. et al. A bond-fluctuation mechanism for stochastic switching in wired molecules. Science 300, 1413–1416 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Zhang, Y. et al. Simultaneous and coordinated rotational switching of all molecular rotors in a network. Nat. Nanotech. 11, 706–712 (2016).

    CAS  Article  Google Scholar 

  14. 14

    Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Loth, S., Baumann, S., Lutz, C. P., Eigler, D. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196–199 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Kalff, F. E. et al. A kilobyte rewritable atomic memory. Nat. Nanotech. 11, 926–929 (2016).

    CAS  Article  Google Scholar 

  17. 17

    Ng, M. K. & Yu, L. Synthesis of amphiphilic conjugated diblock oligomers as molecular diodes. Angew. Chem. Int. Ed. 41, 3598–3601 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Feynman, R. P. There's plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960).

    Google Scholar 

  19. 19

    Wang, Y., Kröge, J., Berndt, R. & Hofer, W. A. Pushing and pulling a Sn ion through an adsorbed phthalocyanine molecule. J. Am. Chem. Soc. 131, 3639–3643 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Liu, J. et al. Positioning and switching phthalocyanine molecules on a Cu(100) surface at room temperature. ACS Nano 8, 12734–12740 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Liu, L. et al. Switching molecular orientation of individual fullerene at room temperature. Sci. Rep. 3, 3062 (2013).

    Article  Google Scholar 

  22. 22

    Kahn, O. & Martinez, C. J. Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44–48 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Shirota, Y. & Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107, 953–1010 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Moresco, F. et al. Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: a route to molecular switching. Phys. Rev. Lett. 86, 672–675 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Kumagai, T. et al. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nat. Chem. 6, 41–46 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Li, C. et al. Manipulating individual dichlorotin phthalocyanine molecules on Cu(100) surface at room temperature by scanning tunneling microscopy. Mater. Res. Express 1, 045101 (2014).

    Article  Google Scholar 

  27. 27

    Nickel, A. et al. Moving nanostructures: pulse-induced positioning of supramolecular assemblies. ACS Nano 7, 191–197 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Alemani, M. et al. Electric field-induced isomerization of azobenzene by STM. J. Am. Chem. Soc. 128, 14446–14447 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Chen, F. et al. Chiral recognition of zinc phthalocyanine on Cu(100) surface. Appl. Phys. Lett. 100, 081602 (2012).

    Article  Google Scholar 

  30. 30

    Xu, R. et al. Room-temperature tracking of chiral recognition process at the single-molecule level. Nano Res. 8, 3505–3511 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Fernandez-Torrente, I. et al. Long-range repulsive interaction between molecules on a metal surface induced by charge transfer. Phys. Rev. Lett. 99, 176103 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Heinrich, A., Lutz, C., Gupta, J. & Eigler, D. Molecule cascades. Science 298, 1381–1387 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Gimzewski, J. K. et al. Rotation of a single molecule within a supramolecular bearing. Science 281, 531–533 (1998).

    CAS  Article  Google Scholar 

  34. 34

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  35. 35

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  36. 36

    Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    CAS  Article  Google Scholar 

  37. 37

    Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Natural Science Foundation of China (grants 61474059, U1432129 and 11504158) and the National Key Basic Research Program of China (2013CB934200).

Author information

Affiliations

Authors

Contributions

L.W. conceived and designed the experiment, discussed and analysed data, and wrote the manuscript. C.L. and Z.W. performed sample preparation and STM. C.L., Z.W., Y.L. and X.L. analysed the data. Y.L. performed the DFT calculations and theoretical analyses. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Li Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1582 kb)

Supplementary information

Supplementary Movie 1 (MOV 236 kb)

Supplementary information

Supplementary Movie 2 (MOV 346 kb)

Supplementary information

Supplementary Movie 3 (MOV 1889 kb)

Supplementary information

Supplementary Movie 4 (MOV 981 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, Z., Lu, Y. et al. Conformation-based signal transfer and processing at the single-molecule level. Nature Nanotech 12, 1071–1076 (2017). https://doi.org/10.1038/nnano.2017.179

Download citation

Further reading