Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques

Abstract

Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii–Moriya interaction (DMI)1,2,3,4,5,6. The last favours homochiral skyrmions, whose motion is driven by spin–orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin–orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI4,5,6,7,8. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect9. This leads to torques10 that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field11,12,13. Although spin–orbit torques led to domain nucleation in continuous films14 and to stochastic nucleation of skyrmions in magnetic tracks15, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin–orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulation of a bit sequence in a racetrack memory created by spin–orbit torque skyrmion generation near a pinning centre.
Figure 2: Experimental set-up and the effect of pulse trains.
Figure 3: Creation of skyrmions at natural defects.
Figure 4: Demonstration of single-skyrmion generation and subsequent motion.

Similar content being viewed by others

References

  1. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  2. Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225–228 (2015).

    Article  Google Scholar 

  3. Yu, X., Tokunaga, Y., Taguchi, Y. & Tokura, Y. Variation of topology in magnetic bubbles in a colossal magnetoresistive manganite. Adv. Mater. 29, 1603958 (2016).

    Article  Google Scholar 

  4. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article  CAS  Google Scholar 

  5. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotech. 11, 444–448 (2016).

    Article  CAS  Google Scholar 

  6. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article  CAS  Google Scholar 

  7. Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    Article  CAS  Google Scholar 

  8. Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2016).

    Article  CAS  Google Scholar 

  9. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  Google Scholar 

  10. Brataas, A. & Hals, K. M. D. Spin–orbit torques in action. Nat. Nanotech. 9, 86–88 (2014).

    Article  CAS  Google Scholar 

  11. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  12. Garello, K. et al. Ultrafast magnetization switching by spin–orbit torques. Appl. Phys. Lett. 105, 212402 (2014).

    Article  Google Scholar 

  13. Lee, K.-S., Lee, S.-W., Min, B-C. & Lee, K.-J. Threshold current for switching of a perpendicular magnetic layer induced by spin hall effect. Appl. Phys. Lett. 102, 112410 (2013).

    Article  Google Scholar 

  14. Huang, K.-F., Wang, D.-S., Tsai, M.-H., Lin, H.-H. & Lai, C.-H. Initialization-free multilevel states driven by spin–orbit torque switching. Adv. Mater. 29, 1601575 (2017).

    Article  Google Scholar 

  15. Legrand, W. et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).

    Article  CAS  Google Scholar 

  16. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  17. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

    Article  CAS  Google Scholar 

  18. Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 16044 ( 2016).

  19. Rosch, A. Skyrmions: moving with the current. Nat. Nanotech. 8, 160–161 (2013).

    Article  CAS  Google Scholar 

  20. Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).

    Google Scholar 

  21. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839–844 (2013).

    Article  CAS  Google Scholar 

  22. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article  CAS  Google Scholar 

  23. Koshibae, W. et al. Memory functions of magnetic skyrmions. Jpn J. Appl. Phys. 54, 053001 (2015).

    Article  Google Scholar 

  24. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotech. 8, 742–747 (2013).

    Article  CAS  Google Scholar 

  25. Zhou, Y. & Ezawa, M. A reversible conversion between a skyrmion and a domain–wall pair in a junction geometry. Nat. Commun. 5, 4652 (2014).

    Article  CAS  Google Scholar 

  26. Hrabec, A. et al. Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017).

    Google Scholar 

  27. Schott, M. et al. The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field. Nano Lett. 17, 3006–3012(2017).

    Google Scholar 

  28. Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

    Article  CAS  Google Scholar 

  29. Büttner, F. In Holographic Materials and Optical Systems (eds Naydenova, I., Babeva, T. & Nazarova, D.) Ch. 10 (InTech, 2017).

  30. Rohart, S. & Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 184422 (2013).

    Article  Google Scholar 

  31. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under Award no. DE-SC0012371. F.B. acknowledges financial support by the German Science Foundation under grant no. BU 3297/1-1.

Author information

Authors and Affiliations

Authors

Contributions

F.B., B.P., S.E. and G.S.D.B. conceived and designed the experiment. F.B., I.L., M.S., C.M.G. and D.E. prepared and pre-characterized the samples. F.B., I.L., M.S., B.P., P.H., J.G. and L.C. performed the experiments with support by J.V. B.P. and P.H. reconstructed the holographic images. I.L., F.B. and B.K. performed the micromagnetic simulations. F.B. drafted the manuscript. S.E. and G.S.D.B. supervised the project. All the authors discussed the results, the implications and the figures, and commented on the manuscript.

Corresponding author

Correspondence to Felix Büttner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 267 kb)

Supplementary information

Supplementary Movie 1 (AVI 740 kb)

Supplementary information

Supplementary Movie 2 (AVI 4894 kb)

Supplementary information

Supplementary Movie 3 (AVI 8263 kb)

Supplementary information

Supplementary Movie 4 (AVI 2745 kb)

Supplementary information

Supplementary Movie 5 (AVI 440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büttner, F., Lemesh, I., Schneider, M. et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nature Nanotech 12, 1040–1044 (2017). https://doi.org/10.1038/nnano.2017.178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing