Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

Abstract

Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Momentum (k-space) resolved photoluminescence.
Figure 2: Calculated k-space spectra.
Figure 3: 2D k-space spectra of CdSe nanoplatelets and quantum dots.
Figure 4: Angle-dependent p-polarized emission and excitation of CdSe nanoplatelets and spherical QD monolayers.
Figure 5: Radiation patterns of nanoplatelet and QD monolayer ensembles in isotropic media.
Figure 6: The contribution of different Bloch states determines the isotropic absorption and anisotropic emission of zincblende CdSe nanoplatelets.

Similar content being viewed by others

References

  1. Basu, B. K. Theory of Optical Processes in Semiconductors (Oxford Univ. Press, 1997).

    Google Scholar 

  2. Ithurria, S. & Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 130, 16504–16505 (2008).

    Article  CAS  Google Scholar 

  3. Achtstein, A. W. et al. Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett. 12, 3151–3157 (2012).

    Article  CAS  Google Scholar 

  4. Joo, J., Son, J. S., Kwon, S. G., Yu, J. H. & Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 128, 5632–5633 (2006).

    Article  CAS  Google Scholar 

  5. Wang, Q., Kalantar-Zadeh, K., Kis, A., Coleman, J. & Strano, M. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  6. Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Article  Google Scholar 

  7. Perera, M. M. et al. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7, 4449–4458 (2013).

    Article  CAS  Google Scholar 

  8. Benchamekh, R. et al. Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe. Phys. Rev. B 89, 035307 (2014).

    Article  Google Scholar 

  9. Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012).

    Article  Google Scholar 

  10. Scott, R. et al. Time-resolved stark spectroscopy in CdSe nanoplatelets: exciton binding energy, polarizability, and field-dependent radiative rates. Nano Lett. 16, 6576–6583 (2016).

    Article  CAS  Google Scholar 

  11. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).

    Article  Google Scholar 

  12. Naeem, A. et al. Giant exciton oscillator strength and radiatively limited dephasing in two-dimensional platelets. Phys. Rev. B 91, 121302 (2015).

    Article  Google Scholar 

  13. Achtstein, A. W. et al. p-State luminescence in CdSe nanoplatelets: role of lateral confinement and a longitudinal optical phonon bottleneck. Phys. Rev. Lett. 116, 116802 (2016).

    Article  Google Scholar 

  14. Poellmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2 . Nat. Mater. 14, 889–893 (2016).

    Article  Google Scholar 

  15. Wang, H. et al. Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2 . Phys. Rev. B 93, 045407 (2016).

    Article  Google Scholar 

  16. Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotech. 8, 271–276 (2013).

    Article  CAS  Google Scholar 

  17. Brown, S. J., Schlitz, R. A., Chabinyc, M. L. & Schuller, J. A. Morphology-dependent optical anisotropies in the n-type polymer P(NDI2OD-T2). Phys. Rev. B 94, 165105 (2016).

    Article  Google Scholar 

  18. Pukhov, K. K., Basiev, T. T. & Orlovskii, Y. V. Spontaneous emission in dielectric nanoparticles. JETP Lett. 88, 12–18 (2008).

    Article  CAS  Google Scholar 

  19. Chuang, S. L. & Chang, C. S. k·p method for strained wurtzite semiconductors. Phys. Rev. B 54, 2491 (1996).

    Article  CAS  Google Scholar 

  20. Empedocles, S., Neuhauser, R. & Bawendi, M. Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy. Nature 399, 126–130 (1999).

    Article  CAS  Google Scholar 

  21. Koberling, F. et al. Fluorescence anisotropy and crystal structure of individual semiconductor nanocrystals. J. Phys. Chem. B 107, 7463–7471 (2003).

    Article  CAS  Google Scholar 

  22. Rodina, A. & Efros, A. Effect of dielectric confinement on optical properties of colloidal nanostructures. JETP Lett. 149, 641–655 (2016).

    Google Scholar 

  23. Lieb, M. A., Zavislan, J. M. & Novotny, L. Single-molecule orientations determined by direct emission pattern imaging. J. Opt. Soc. Am. B 21, 1210–1215 (2004).

    Article  CAS  Google Scholar 

  24. Kim, D. Y. et al. Overcoming the fundamental light-extraction efficiency limitations of deep ultraviolet light-emitting diodes by utilizing transverse-magnetic-dominant emission. Light Sci. Appl. 4, e263 (2015).

    Article  CAS  Google Scholar 

  25. Brütting, W., Frischeisen, J., Schmidt, T. D., Scholz, B. J. & Mayr, C. Device efficiency of organic light-emitting diodes: progress by improved light outcoupling. Phys. Status Solidi (A) 210, 44–65 (2013).

    Article  Google Scholar 

  26. Schmidt, T. D. et al. Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter's radiative quantum efficiency. Appl. Phys. Lett. 99, 163302 (2011).

    Article  Google Scholar 

  27. Chen, X. et al. Angular distribution of polarized light and its effect on light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes. Opt. Express 24, A935–A942 (2016).

    Article  CAS  Google Scholar 

  28. Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936–941 (2011).

    Article  CAS  Google Scholar 

  29. The Merck Index Online, https://www.rsc.org/Merck-Index.

  30. Achtstein, A. W. et al. Linear absorption in CdSe nanoplates: thickness and lateral size dependency of the intrinsic absorption. J. Phys. Chem. C 119, 20156–20161 (2015).

    Article  CAS  Google Scholar 

  31. Dolgaleva, K. & Boyd, R. W. Local-field effects in nanostructured photonic materials. Adv. Opt. Photon. 4, 1–77 (2012).

    Article  Google Scholar 

  32. Taminiau, T. H., Karaveli, S., van Hulst, N. F. & Zia, R. Quantifying the magnetic nature of light emission. Nat. Commun. 3, 979 (2012).

    Article  Google Scholar 

  33. Adachi, S. Handbook on Physical Properties of Semiconductors (Kluwer Academic, 2004).

    Google Scholar 

  34. Yu, P. & Cardona, M. Fundamentals of Semiconductors (Springer, 1996).

    Book  Google Scholar 

  35. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).

  36. Mooney, J. & Kambhampati, P. Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra. J. Phys. Chem. Lett. 4, 3316–3318 (2013).

    Article  CAS  Google Scholar 

  37. Sihvola, A. & Kong, J. Effective permittivity of dielectric mixtures. IEEE Trans. Geosci. Remote Sens. 26, 420–429 (1988).

    Article  Google Scholar 

  38. Loudon, R. The Quantum Theory of Light 3rd edn (Oxford Univ. Press, 2000).

    Google Scholar 

  39. Cunningham, P. D., Boercker, J. E., Placencia, D. & Tischler, J. G. Anisotropic absorption in PbSe nanorods. ACS Nano 8, 581–590 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.S., U.W. and A.W.A acknowledge DFG grants WO477–1/32 and AC290-1/1 and 2/1. J.I.C. acknowledges support from MINECO project CTQ2014-60178-P and UJI project P1-1B2014-24, M.A. from the CHEMREAGENTS program and A.A. from BRFFI grant no. X16M-020.

Author information

Authors and Affiliations

Authors

Contributions

J.H., R.S., A.V.P. and N.G. performed measurements. A.V.P., A.A., A.M. and M.A. made samples. J.H., R.S., N.B.G. and A.W.A. analysed, modelled and interpreted the data. J.I.C. contributed theoretical interpretation. J.H., R.S., N.B.G, J.I.C., N.O. and A.W.A wrote the manuscript. U.W. contributed to discussions.

Corresponding author

Correspondence to Alexander W. Achtstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, R., Heckmann, J., Prudnikau, A. et al. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure. Nature Nanotech 12, 1155–1160 (2017). https://doi.org/10.1038/nnano.2017.177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing